

Canadian Neutrino Program A History of SNO and SNOLAB BNO-50 David Sinclair

- It is a great pleasure to join with you in celebrating the 50th anniversary of the world's first, purpose built underground laboratory
- This laboratory has been the home of many pioneering studies in fundamental physics and several of these have been critical in the development of the Canadian program.
- Examples are SAGE which showed that the problem of missing solar neutrinos was not just a high energy problem; and the pioneering work of Pomansky in developing the search for 2 neutrino- and neutrinoless- double beta decay

Outline of this talk

- Address the history of SNO and SNOLAB
- Include some discussion of Dark Matter searches along with the neutrino physics
- Look at the current and near term physics program at SNOLAB
- Will not cover T2K which is an important follow-on to SNO but not one I have been involved with.

The Early Days

- The underground, neutrino program in Canada started with John Simpson, working in a salt mine
- Looked for double beta decay in germanium detectors
- Loaded Ge and Si detectors with tritium and looked for endpoint distortion

- The neutrino program took off with the start of SNO
- The following is a very brief history

Ray Davis and his Chlorine based Detector

Pontecorvo Questions Neutrino

- Perhaps neutrinos 'oscillate'
- Idea was not generally accepted
- Required large mixing of neutrinos and this went against accepted wisdom
- Strong incentive for Gallium experiments

15 pytho TTOHMEROPH

Bruno Pontecorvo

Background to SNO (cont)

- 1984 Herb Chen proposes a heavy water solar neutrino detector with Neutral Current detection capability
- 1985 Mikheyev and Smirnov develop theory or resonant oscillations
- Suddenly the 'World' believes in neutrino oscillations
- Single set of parameters solves SNP with small vacuum mixing, dark matter and supernova!!!
- 1990 SAGE shows greatly suppressed Ga rate
- 1990 Start of construction of SNO

- 1000 Tonnes of D₂O
- 12 M Acrylic vessel
- 10,000 phototubes
- 8000 Tonnes of pure light water
- 2000 m deep in Mine
- World's largest deep cavern
- All materials very pure

Physics with SNO

Look for events in heavy water that could be attributed to neutrinos

- 3 reactions
 - charged current measures the v e flux
 - elastic scattering mix of electron and total neutrino flux sensitivity
 - neutral current measures total neutrino flux

Run in 3 phases

- 1) Run with pure Heavy Water
- 2) Add 0.2% NaCl to enhance NC detection
- 3) Remove NaCI, add Neutral Current Detectors (NCDs)
- Each phase is approx. 2 years

Data plotted as function of Direction to Sun – Pure D₂O

$$\begin{split} \phi_{\rm CC}^{\rm SNO} &= 1.59^{+0.08}_{-0.07}({\rm stat})^{+0.06}_{-0.08}({\rm syst}) \\ \phi_{\rm ES}^{\rm SNO} &= 2.21^{+0.31}_{-0.26}({\rm stat}) \pm 0.10 \ ({\rm syst}) \\ \phi_{\rm NC}^{\rm SNO} &= 5.21 \pm 0.27 \ ({\rm stat}) \pm 0.38 \ ({\rm syst}) \end{split}$$

As total neutrino flux is much greater than electron neutrino flux neutrinos must oscillate, neutrinos must mix and neutrinos must have mass

The Nobel Prize in Physics 2015

Photo: A. Mahmoud **Takaaki Kajita** Prize share: 1/2

Photo: A. Mahmoud Arthur B. McDonald Prize share: 1/2

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

Where do we go from here

- Where do neutrino masses come from and can we get a more direct measure of the masses? Can detection of double beta decay help?
- Neutrinos cannot make up a large fraction of the Dark Matter. Can we find what does?
- We have done a precision measurement on high energy solar neutrinos can we go lower?
- These questions follow from the success of SNO
- Attempted solutions build on the technology developed to make SNO possible

SNOLAB

- SNOLAB is a facility that provides a basic infrastructure in which to mount ultra-low background experiments
- It has been established as an International Facility for Underground Science
- Continues the vision of Baksan but will not focus on cosmic ray physics

Double Beta Searches

- SNO+
 - Convert SNO to liquid scintillator
 - Use of LAB scintillator
 - Load with Tellurium to search for double beta decay
 - Status Currently filled with light water to commission detector

Future double beta

- Possible large double beta decay experiment with xenon (See Vladimir's talk)
- Possible germanium detector
- Large hall (Cryopit) available
- Decision will follow US downselect process

What is the dark matter puzzle?

- There is more to a galaxy than meets the eye...
- Looking at the speed of a star in a rotating galaxy shows there is more material within than can be accounted for by stars, dust, etc.
- Material you can't see dark matter

Dark Matter Experimental techniques

Experimental Challenge

- WIMP nuclear recoil signal is:
 - Low rate (0.01 10⁻⁵ events/kg/day)
 - Small energy (1-100 keV actual: observed is less)
- Detection technique must be:
 - Low background
 - Gamma, beta: from U/Th/Co/Pb/etc radio-impurities
 - Neutron, nuclear: from U/Th radio-impurities, radon daughters and c.r. μ spallation
 - Go underground!
 - Low threshold
 - To minimise form factor, maximise spectrum
 - Discriminating Position sensitivity
 - Difference between WIMPs/n and γ/β, background rejection, directionality
 - Large, massive
 - Provide enough target material for interactions

Current programme: Dark Matter at SNOLAB

- Noble Liquids: DEAP-I, MiniCLEAN, & DEAP-3600
 - Single Phase Liquid Argon using pulse shape discrimination
 - Prototype DEAP-I completed operation. Demonstration of PSD at 10⁸.
 - DEAP-3600 operational first commissioning and calibration data under analysis, MiniCLEAN currently filling with argon.
 - Will measure Spin Independent cross-section.
- Superheated Liquid / Bubble chamber: PICASSO, COUPP & PICO
 - Superheated droplet detectors and bubble chambers. Insensitive to MIPS radioactive background at operating temperature, threshold devices; alpha discrimination demonstrated;
 - PICO-60 (C₃F₈) in data taking; New chamber in construction to remove interface events (PICO-40);
 - Measure Spin Dependent cross-section primarily, some sensitivity to SI;
 - World leading spin-dependent sensitivity published in 2012, 2015, 2017.
- Solid State: DAMIC, SuperCDMS
 - State of the art CCD (DAMIC) Si / Ge crystals with ionisation / phonon readout (SuperCDMS).
 - DAMIC operational since 2012, 100g CCD operational; Upgrade planned to 1kg
 - SuperCDMS next phase will benefit from SNOLAB depth to reach desired sensitivity. Approved as a US DOE/NSF G2 experiment
 - Mostly sensitive to Spin Independent cross-section at low mass.

PICO-60 Recent Results

- Superheated fluid bubble chambers
- Particle interactions nucleate bubbles
 - Good discrimination against backgrounds
 - Alphas 'louder'
 - Gammas do not nucleate
- Visual and acoustic sensors

Propylene Glycol (hydraulic fluid)

arXiv: 1702.07666

WIMP - Proton Exclusion

The 90% C.L. limit on the SD WIMP-proton cross section from PICO-60 C3F8 blue, along with limits from PICO-60 CF3I (red), PICO-2L (purple), PICASSO (green), SIMPLE (orange), PandaX-II (cyan), IceCube (dashed and dotted pink), and SuperK (dashed and dotted black)

DEAP-3600 Design

DEAP-3600 Construction

MiniCLEAN Design / Construction

Cryogenic Detector Programme

- US G2 Down-select funded SuperCDMS-SNOLAB with emphasis on low energy WIMPS. Cryostat and system to accommodate full 400 kg capacity with ~25kg will be initially deployed.
 - Potential future international developments
- SNOLAB and SuperCDMS working to coordinate between funding agencies, laboratory and experiment, through the project lifecycle.

Ladder labs – SuperCDMS / CUTE location

Spin independent results summary

Plot from SNOMASS Review

Surface Facilities

Underground Facilities

SNO Area: 1860 m²

SNOLAB Area: 5360 m²

Community supported

- 164 faculty researchers from 78 institutions over 15 countries
 - ~25% of faculty are Canadian
- ~500 faculty, highly qualified personnel and technical support
- ~11,000 underground person-shifts per year (~50/dayshift)

Users by Country

Total Number of Users - 488

Current programme

Experiment	Neutrino	Dark Matter	Status	Collaboration Demographics
CUTE		\checkmark	In Preparation	Canada, US, UK, France, India, Spain
DAMIC		\checkmark	Operational	Canada, US, Argentina, Brazil, Mexico, Paraguay, Switzerland
DEAP-3600		\checkmark	Operational	Canada, US, UK
DEAP-50T/CLEAN		\checkmark	Letter of Intent	Canada, US, UK
DMTPC		\checkmark	Concept Phase	US, UK,
DUST			Letter of Intent	Canada
FLAME			Operational	Canada
Ge-1T	\checkmark		Letter of Intent	Canada, US
nEXO	\checkmark		Concept Phase	Canada, US
HALO	\checkmark		Operational	Canada, US, UK, France, Germany, Japan
MiniCLEAN		\checkmark	Commissioning	Canada, US
MODCC			Operational	Canada
NEWS		\checkmark	In Preparation	Canada, US, France
PICO-60		\checkmark	Operational	Canada, US, Czech Republic, India, Mexico
PICO-500		\checkmark	Letter of Intent	Canada, US, Czech Republic, India, Mexico
REPAIR			Operational	Canada
SuperCDMS		\checkmark	In Preparation	Canada, US, UK, France, India, Spain
SNO+	\checkmark		Commissioning	Canada, US, UK, Germany, Mexico, Portugal

Summary

- Deep underground research facilities provide the ultra-quiet radioactive background environments for rare or low energy interactions
- SNOLAB has developed from the initial SNO solar neutrino detector to support a wide range of projects:
 - Direct Galactic dark matter searches
 - Neutrino intrinsic physics properties
 - Natural neutrino sources
 - Genomics
 - Mining innovation
- The initial science programme has already delivered new results, with the larger experiments coming on line imminently
 - PICO-60 new results in 2017
 - Next major results anticipated from DEAP-3600 detector in time for TAUP
 - SNO+ being commissioned with water, first scintillator on site