Recent results from the SND detector

Aleksandr Korol Budker Institute of Nuclear Physics, Novosibirsk (on behalf of the SND collaboration)

Сессия-конференция Секции ядерной физики ОФН РАН "Физика фундаментальных взаимодействий", посвященная 50-летию БНО

SND detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 – NaI(TI) crystals, 5 – phototriodes, 6 – iron muon absorber, 7–9 – muon detector, 10 – focusing solenoids.

Сессия БНО-50

Calorimeter: $0.95 \times 4\pi$, 13.4X0, $\delta E/E = 0.042/\sqrt[4]{E(GeV)}$, $\delta \varphi = 1.5^{\circ}$. Tracking system: $0.94 \times 4\pi$, $\delta \varphi = 0.45^{\circ}$, $\delta \Theta = 0.8^{\circ}$ SND collected data at VEPP-2M (1996-2000) and at VEPP-2000 (2010-2013)

VEPP-2000 e⁺e⁻ collider

VEPP-2000 parameters:

- c.m. energy 0.3-2.0 GeV
- circumference 24.4 m
 - round beam optics
- luminosity at 2 GeV: 1×10^{32} cm⁻² sec⁻¹ (project) 2×10^{31} cm⁻² sec⁻¹ (achieved)

- Electrons and positrons are transported from the VEPP-5 injection complex.
- Experiments at upgraded VEPP-2000 has begun at the end of 2016.

SND data

VEPP-2M			
	Below 	Arround 	Above o
IL, pb-1	9.1	13.2	8.8
√s, GeV	0.36 - 0.97	0.98 - 1.06	1.06 - 1.38
VEPP-2000			
IL, pb-1	15.4	6.9	47.0
√s, GeV	0.30 - 0.97	0.98 - 1.05	1.05 - 2.00

About 15 hadronic processes are currently under analysis. Here we report three new measurements.

Precision measurement $e^+e^- \rightarrow \pi^{\circ}\gamma$ (VEPP-2M, VEPP-2000 data)

First measurements $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ $e^+e^- \rightarrow \omega\pi^0\eta$

Process $e^+e^- \rightarrow \pi^{\circ}\gamma$ (VEPP-2M data)

- Third largest cross section (after 2π and 3π) below 1 GeV
- Measurement of the $\pi^{\circ}\gamma^{*}\gamma$ transition form factor
- Measurement of the radiative decays $V \rightarrow \pi^{\circ} \gamma$, $V = \rho, \omega, \phi, ...$
- There is a tension between the **KLOE** measurement of the ratio $\Gamma(\omega \rightarrow \pi^{\circ} \gamma)/\Gamma(\omega \rightarrow \pi^{+} \pi^{-} \pi^{\circ})$ and other measurements of ω -meson parameters:

$e^+e^- \rightarrow \pi^{\circ}\gamma$: analysis features

The process $e^+e^- \rightarrow \gamma \gamma$ is used for normalization. Common selection criteria for 2γ and 3γ final states:

• trigger, no charged tracks, total energy deposition and momentum, muon system veto.

Final selection is **based on 4C kinematic fit:**

 $\chi^{2}_{3\gamma} < 30$, $36^{\circ} < \theta_{\gamma} < 144^{\circ}$, $80 < M_{rec} < 190$ MeV,

here \mathbf{M}_{rec} is the mass recoiling against largest energy photon.

The number of signal events is determined from the fit of π° in M_{rec}spectrum.

Results on radiative decays

 $B(\omega \to \pi^0 \gamma) B(\omega \to e^+ e^-) = (6.336 \pm 0.056 \pm 0.089) \times 10^{-6}$

Using PDG value for $B(\omega \rightarrow \pi^+\pi^-\pi^\circ) \times B(\omega \rightarrow e^+e^-)$ we have obtained $\Gamma(\omega \rightarrow \pi^\circ \gamma)/\Gamma(\omega \rightarrow \pi^+\pi^-\pi^\circ) = 0.0992 \pm 0.0023$, which is higher than the KLOE value 0.0897 ± 0.0016 by 3.4σ .

$$B(\rho \to \pi^0 \gamma) = (4.20 \pm 0.47 \pm 0.22) \times 10^{-4}$$

By 1.8 σ lower than the current PDG value $(6.0 \pm 0.8) \times 10^{-4}$, but agrees with the branching fraction for the charged mode $B(\rho^{\pm} \rightarrow \pi^{\pm} \gamma) = (4.5 \pm 0.5) \times 10^{-4}$.

$$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (3.92^{+0.71}_{-0.40} \pm 0.51) \times 10^{-7}$$

The model uncertainties of the previous measurements (~8%) were underestimated. For ϕ_{ϕ} fixed at the value (163±7)° obtained in the VMD fit to $e^+e^- \rightarrow \pi^+\pi^-\pi^\circ$ data

$$B(\phi \to \pi^0 \gamma) B(\phi \to e^+ e^-) = (4.04 \pm 0.09 \pm 0.19) \times 10^{-7}$$

Exclusive vs inclusive measurements

Below **2 GeV** the total hadronic cross section is calculated as a sum of exclusive cross sections.

Currenly the exclusive and inclusive data below **2 GeV** are in reasonable agreement.

In the energy region 1.5-2.0 GeV exclusive data are incomplete. There are no experimental data on the final states $\pi^{+}\pi^{-}\pi^{0}\eta$, $\pi^{+}\pi^{-}\eta\eta$, $\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$, $\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta$, ...

Process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$

Mass recoling against η

Spectrum contributions:

- (1) sum of $\omega \eta$, $\phi \eta$ and structureless $\pi^+ \pi^- \pi^0 \eta$ (blue);
- (2) sum of $\omega\eta$, $\phi\eta$, structureless $\pi^{+}\pi^{-}\pi^{\circ}\eta$ and $a_{0}(980)\rho$ (red);
- (3) sum of $\phi\eta$ and $a_0(980)\rho$ contributions.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$: mass spectrum

Above **1.8 GeV** the dominant mechanism of this reaction is $a_0(980)\rho$.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$: cross-section

- The process $e^+e^- \rightarrow \omega \eta$ has been measured separately.
- There is a significant difference between **SND** result and the previous **BABAR** measurement. Phys. Rev. D 94, 092002 (2016)

arXiv:1607.00371 [hep-ex]

Сессия БНО-50

$$4 \begin{bmatrix} \cdot & \text{SND} \\ \cdot & \text{BABAR} \\ 0 \end{bmatrix}$$

$$2 \begin{bmatrix} \cdot & \text{SND} \\ \cdot & \text{BABAR} \\ 1.4 \end{bmatrix}$$

$$1.4 \\ 1.6 \\ 1.8 \\ 2 \\ E (GeV)$$

$$12$$

2

12

- The intermediate states are ω_{η} , ϕ_{η} , structureless $\pi^{+}\pi^{-}\pi^{\circ}\eta$ and $a_{0}(980)\rho$.
- The known ωη and φη contributions explain about 50-60% of the cross section below 1.8 GeV.
- Above **1.8 GeV** the dominant reaction mechanism is $a_{0}(980)\rho$.

 $\mathfrak{I}(e^+e^- \to \omega \eta), nb$

Process $e^+e^- \rightarrow \omega \pi^{\circ} \eta$

The $\eta\pi^{\circ}$ mass spectrum for selected $\omega\pi^{\circ}\eta$ events is well described by the model of the $\omega a_{0}(980)$ intermediate state.

Events of the $e^+e^- \rightarrow \pi^{\circ}\pi^{\circ}\eta\gamma \rightarrow 7\gamma$ process are selected. The dominant intermediate state is $\omega\pi^{\circ}\eta$. No noticeable $\eta^{\circ}\gamma$ signal observed.

$e^+e^- \rightarrow \omega \pi^{\circ} \eta$: cross section

- First measurement of the $e^+e^- \rightarrow \omega \pi^\circ \eta$ cross section.
- The cross-section energy dependence is described by a single-resonance model.
- The resonance mass and width are consistent with those for ρ(1700)

and non-resonant is worse at 1.2σ

Phys. Rev. D 94, 032010 (2016) arXiv:1606.06481 [hep-ex]

The cross section is about **2.5 nb**. **5%** of the total hadronic cross section in the energy region **1.8 - 2.0 GeV**.

Conclusions

- During 2010 2013 the SND detector accumulated ~70 pb⁻¹ of integrated luminosity at the VEPP-2000 electron-positron collider in the c.m. energy range 0.3 2 GeV.
- Data analysis on hadron production is in progress. The obtained results have comparable or better accuracy than previous measurements $(\pi^{\circ}\gamma)$.
- For some processes the cross sections have been measured for the first time (π⁺π⁻π[°]η, ωπ[°]η).
- After VEPP-2000 upgrade the data taking runs will be continued with a goal of ~1 fb⁻¹ of integrated luminosity.