Results of in-depth data analysis of experimental search of 2K(2v)-capture in Kr-78

Vladimir Kazalov Baksan Neutrino Observatory INR RAS

International Session-Conference of the Section of Nuclear Physics of the Physical Sciences Department of the Russian Academy of Sciences, June 06 – June 08 2017, Nalchik

Yu. Gavriljuk, A. Gangapshev, V. Kazalov, V. Kuzminov, D. Tekueva, S.P. Yakimenko

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow Russia

S. Panasenko, S. Ratkevich

Karazin Kharkiv National University, Kharkiv, Ukraine

Candidates for measurement of $2\nu 2\beta^+$ -decay

Transition	E _{2K} , MeV	Isotopic abundance, %
⁷⁸ Kr→ ⁷⁸ Se	2.867	0.35
⁹⁶ Ru→ ⁹⁶ Mo	2.724	5.52
¹⁰⁶ Cd→ ¹⁰⁶ Pd	2.771	1.25
¹²⁴ Xe→ ¹²⁴ Te	2.866	0.10
¹³⁰ Ba→ ¹³⁰ Xe	2.610	0.11
¹³⁶ Ce→ ¹³⁶ Ba	2.401	0.20

 $\begin{array}{l} (Z, A) \rightarrow (Z - 2, A) + 2\beta^{+}(+ 2\nu_{e}) \\ e_{a} + (Z, A) \rightarrow (Z - 2, A) + \beta^{+}(+ 2\nu_{e}) \\ \hline e_{a} + e_{a} + (Z, A) \rightarrow (Z - 2, A) + 2\nu_{e} + 2X \\ e_{a} + e_{a} + (Z, A) \rightarrow (Z - 2, A)^{*} \rightarrow (Z - 2, A) + \gamma + 2X \end{array}$

Se**----> Se*+ Se*

$$\omega_k = 0.596 \quad x$$
-ray
 $\omega_e = 0.404 \quad e$ -Auger

$K_{ab} = 12.652$ keV,	<u>2K_{ab}=25.3 keV</u>
$K_{\alpha l} = 11.221 \ keV$	0.574
$K_{\alpha 2} = 11.181 \ keV$	0.298
$K_{\beta l} = 12.491 \ keV$	0.120
$K_{\beta 2} = 12.651 \ keV$	0.005

Probability of deexcitation

Se*	Se*	
e _a	e _a	$0.404^2 = 0.163$
e_a	К	} = 0.481
К	e_a	
К	K	$0.596^2 = 0.355$

Schematic view of Proportional Counter

1. Material	Cu
2. Total length, mm	1160
3. Fiducial length, mm	595
4. Outer diameter, mm	150
5. Inner diameter, mm	137
6. Anode wire diameter, mm	0.010
7. Total volume, l	10.37
8. Fiducial volume, l	8.77
9. Pressure, at	5
10. Capacity, pF	31
11. Anode resistance, Ohm	613

Low background shield

- 18 см соррег (M1)
- 15 cm lead
- 8cm borated polyethylene
- depth-4900 m.w.e., $\phi_{\mu} = 2,23 \times 10^{-9} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$

Schematic diagram of the 2K-capture event

PHYSICAL REVIEW C 87, 035501 (2013)

Indications of $2\nu 2K$ capture in ⁷⁸Kr

Yu. M. Gavrilyuk, A. M. Gangapshev, V. V. Kazalov, and V. V. Kuzminov Baksan Neutrino Observatory INR RAS, Russia

> S. I. Panasenko and S. S. Ratkevich^{*} V. N. Karazin Kharkiv National University, Kharkiv, Ukraine (Received 6 August 2012; published 4 March 2013)

Results from searches of double *K* capture in ⁷⁸Kr in an experiment with the large-volume copper proportional counter, using data samples corresponding of two independent series of measurements with different intrinsic radioactivity background are presented. The total exposure of the low-background measurements is 0.343 kg × y. A combination of methods of selection of useful events with a unique set of characteristics and wavelet analysis of events allowed a reduction of the background by ~2000 times in the energy region of interest. The statistical significance of combined data from two stages of operation equals 2.5σ . Corresponding to such effect, the half-life of ⁷⁸Kr relative to $2\nu 2K$ capture equals $T_{1/2} = [9.2^{+5.5}_{-2.6}(\text{stat}) \pm 1.3(\text{syst})] \times 10^{21}$ y. Half-life limits for other 2*K* transitions to the excited states in ⁷⁸Se are obtained at the level of 10^{21} y in the first time. In particular, limits on $2\nu 2K$ capture to the excited level 0_1^+ (1499 keV) and resonant neutrinoless double *K* capture to the level of $T_{1/2} \ge 5.4 \times 10^{21}$ y at 90% C.L.

DOI: 10.1103/PhysRevC.87.035501

PACS number(s): 23.40.-s, 27.50.+e, 14.60.Pq, 21.10.Tg

SO and SU processes in Kr-81

chain associated with the double $K\mbox{-capture}$

$$2e_K + (Z, A) \rightarrow (Z - 2, A)^{K^{++}} + 2\nu_e,$$

$$\hookrightarrow (Z - 2, A) + K^h_\alpha + K^s_\alpha + m \times e_A,$$

chain associated with single K-capture

$$e_{K} + (Z, A) \rightarrow (Z - 1, A)^{K^{+}} + \nu_{e}$$

$$\hookrightarrow (Z - 1, A) + K_{\alpha} + e_{A}$$

$$e_{K} + (Z, A) \rightarrow (Z - 1, A)^{K^{++}} + \nu_{e} + e_{K}$$

$$\hookrightarrow (Z - 1, A) + K_{\alpha}^{h} + K_{\alpha}^{s} + e_{A}$$

- double K-shell photoionization of an atom can create a "hollow atom" by absorbing a single photon and releasing both K electrons.
- double K ionization following electron capture (EC) decay of radioactive nuclei. In such a process, there is a small probability that the second electron in the K-shell is excited to an unoccupied level (shakeup; SU) or ejected to the continuum (shake-off; SO).

The total energy release and radiation characteristics of SO processes in the single K-capture decay of Kr-81 are similar to the ones of the 2K-capture in Kr-78. This means that they can create a background masking the decay under investigation.

The total probability of K-shell SO and SU processes to occur is on the order of 10⁻⁴ per a single K-capture.

Stages of measurements

Three stages of measurements were performed with a sample krypton containing Kr-81. Total collection time of experimental data in the first and second stage was 7600 and 8400 h respectively. The LPC operated at the pressure of 4.4 and 4.6 bar in the first and second stage, respectively. In the third stage, the total time of measurement amounted to 12,000 h with a pressure of 5.6 bar. The total number of the recorded EC decay has reached 6.7 × 10⁶ events.

Volume activity of Kr-81 is (0.076±0.004) min⁻¹ l⁻¹

Two stages of measurements were carried out with krypton enriched in Kr-78. The LPC operated at a pressure of 4.4 and 4.6 bar at the first and second stage, respectively. The total collection time amounted to 19,000 h.

In our analysis of the accumulated data, the double K-shell ionization of the Br-81 daughter was studied by triple coincidence measurements between two practically simultaneous radiations resulting from the filling of the two holes in the K shell: hypersatellite- and satellite-line photons and bromine emitted electrons (sum Auger electrons and K electrons ejected) - [K^h \otimes K^s \otimes (e_A + e^{SO})].

Two-dimensional amplitude distributions of energy deposits of individual components

(a) the spectrum Auger electrons and K_{α}^{N} after the single K-capture decay of Kr-81 and (b) a fragment of the coincidence spectrum with [K^h \otimes K^s]

RESULTS

The total number of Kr-81 K-captures can be estimated from the area under the 13.5 keV TAP curve for all types of events as $N_{K} = N_{K}^{exp}/\epsilon_{d} = 7.8 \times 10^{6}$, where $N_{K}^{exp} = 6.7 \times 10^{6}$ - the number of events with the energy of the region 13.5 ± 3.0 keV for a total of 1,175 live days of measurement; $\epsilon_{d} = 0.869$ is the absolute efficiency to detect respective radiation.

Events selection parameters

Kr-81 $A_2 \sim A_2 \sim 12 \text{ keV}, 0.6 < A_1 < 8.5 \text{ keV}$ $[K^h_\alpha \otimes K^S_\alpha \otimes (eA + e^{SO}_K)]$ Kr-78 $A_2 \sim A_2 \sim 12 \text{ keV}, 1 < A_1 < 4 \text{ keV}$ $[K^h_\alpha \otimes K^S_\alpha \otimes eA]$

$$N_{KK} = N_K P_{KK} \, \omega_{2K} \delta_e \eta = 57 \pm 8, \, \mbox{where}$$

 N_{K} = 7.8 × 10⁶ - the number of K-capture during 81 Kr decays. P_{KK} = 6.5 × 10⁻⁵ - the probability of the double K-shell vacancy production per K-electron capture for Br-81. (Theoretical calculations) δ_{e} = 0.6 - the fraction of all ejected K-electrons registered in the coincidence according to the selection criteria.

 $\eta = \varepsilon_p \cdot \varepsilon_3 \cdot \alpha_k$ with parameters:

 $\varepsilon_{p} = 0.81 \pm 0.01$ - the probability of two K photons to be absorbed in the operating volume;

 $\varepsilon_3 = 0.54 \pm 0.05$ - the efficiency to select three-point events;

 $\alpha_k = 0.985 \pm 0.005$ - the fraction of events with two K photons that could be registered as distinct three-point events.

 $N_{coinc}^{dipl} = 42 \pm 6 \implies P_{KK}^{SO} = [5.7 \pm 0.8(stat) \pm 0.4(syst)] \times 10^{-5}$

$$N_{coin}^{enr} = 16 \pm 4 \qquad T_{1/2}^{2V2K} = \ln 2^* N_A \times \frac{p_3 * \varepsilon_f * t}{N_{coin}^{enr}} = [1.9^{+1.3}_{-0.7}(stat) \pm 0.3(syst)] \times 10^{22} \text{ yr}$$

 $N_a = 1.08 \cdot 10^{24}$ - the number of Kr-78 atoms in the fiducial volume of the counter $p_3 = 0.47$ - the fraction of 2K-captures accompanied by the emission of two K-photons.

The efficiency is calculated as $\varepsilon_f = \varepsilon_p \cdot \varepsilon_3 \cdot \alpha_k \cdot k_\lambda$,

 k_{λ} = 0.85 - the useful event selection coefficient for a given threshold for λ t = 787.7 days of live measurement

Thank you!