Electromagnetic calorimeter of the Belle II detector

International Session-Conference of the Section of Nuclear Physics, 2017, Nalchik

V.Shebalin on behalf of ECL group of the Belle II collaboration

Budker Institute of Nuclear Physics, Novosibirsk

6 June 2017 г.

The Belle II detector

Ecectromagnetic calorimeter of the Belle II detector

Calorimeter electronics

- 576 ShaperDSP modules were produced, tested and installed on detector
- 52 VME crates 52 EclCollector modules

∢ 臣

Status

- Encaps were dismounted for the period of modernization
- In January 2017 backward andcap has been mounted
- For barrel and backward encap section all electronics are installed cabling is done
- Installation of forward endcap section is scheduled on September 2017

Electronics status

ECL trigger system

크

Test cosmic runs

- Runs for ECL-ECLTRG consistancy tests
- Comparison of signal amplitudes measured by FAM modules and by ShaperDSP modules
- ECL-CDC runs (CDC)
- Tuning of DAQ

Reconstruction

- New procedure for cluster building
- Number of crystals in the cluster depends of its energy
- Clusters with unproper time are rejected

10/19

Reconstruction

< □ ▶ < 🗗

> < 3</p>

< E

Conclusion

- Calorimeter electronics is installed on detector
- All electronics channels are alive
- DAQ of ECL is able to work at upto 30 kHz trigger rate
- Backward endcap section is mounted. Installation of forward section scheduled on Sep. 2017
- Test cosmic runs of simultaneous ECL-ECLTRG and ECL-CDC data taking were performed
- Calorimeter is regulary calibrated with pulse generator, pulse shape is calibrated with cosmic
- Software development for data acquisiton, reconstruction, and calibration procedures (cosmic, Bhabha, $\gamma\gamma$ etc.) is in progress

Thank you for attention!

- * ロ > * 御 > * 注 > * 注 > 「注 = の < (

backup

FPGA algorithm

- Fit of several measurements to response function taking into account correlation between measurements ->A,T, Quality
- Correlation matrix is obtained from the data

 For some fraction of data both input and output informations are sent to DAQ for test

æ

-Temperature&humidity monitor for barrel:All cables of the barrel calorimeter are connected. PC setup and software will be prepared in coming months.

-Temperature&humidity monitor for endcaps: is ready and running for backward endcap -Temperature&voltages monitor for VME electronics is working.

-Isolation amplifiers for current measurement have been ordered and will be deliverd at the end of this FY.

backup

On-line Luminosity monitor

The main aim of the LOM is (quasi)independent from Belle II DAQ online luminosity measurement for a cross-check as well as providing luminosity when the Belle II is not running

backup

Characteristics

- 16 inputs for 32 endcap sector signals
- Four 12-bit 8-channel AD9637 ADC with 40 MHz sampling rate
- Spartan-6 FPGA
- FTSW, JTAG, VETO inputs
- Ethernet interface for PC

The module has been produced Hardware test has been done Firmware, software development and emulation of the algorithm are going on

Image: Image:

Pure Csl							
crystal	$\rho,$	X ₀ , cm	$\lambda_{em},$ nm	n	N_{ph}/MeV	τ , ns	
CsI(Tl)	4.51	1.86	550	1.8	52000	1000	
CsI BaFa	4.51 4.89	1.86 2.03	305/400 220/310	2 1.56	5000 2500/6500	30/1000 0.6/620	
CeF_3	6.16	1.65	310	1.62	600	3	
$PbWO_4$ LuAlO ₂ (Co)	8.28 8.24	0.89	430	2.2	25 20500	10 18	A COLO
$Lu_3Al_5O_{12}(Ce)$	7.13	1.37	510	1.84	5600	60	
$Lu_2SiO_5(Ce)$	7.41	1.2	420	1.82	26000	12/40	

- Pure Csl is a good candidate for fast scintillator in endcap It has relatively high lightoutput, short decay component
- There are several producers who can provide crystal production
- Radiation hardness of 14 pure Csl crystals were tested up to 14 krad (expected dose less than 10 krad)
- In most of the crystals the drop of the light output is less than 20%

< 🗆 🕨