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Ultraperipheral collisions (UPCs)
• Ions can interact at large impact parameters b >> RA+RB  → ultraperipheral 
collisions (UPCs) → strong interaction suppressed → interaction via quasi-
real photons, Fermi (1924), von Weizsäcker; Williams (1934)

- UPCs correspond to empty detector with only two lepton/
pion tracks  

- Nuclear coherence by veto on neutron production by Zero 
Degree Calorimeters and selection of small pt 

Photon flux from QED:  
- high intensity ~ Z2 
- high photon energy ~ 𝛾L

Photoproduction 
cross section = rapidity of ρ

• Coherent photoproduction of vector mesons in UPCs:                                        

UPCs@LHC = 𝛾p and 𝛾A interactions at unprecedentedly large 
energies, Baltz et al., The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1
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Nuclear shadowing 
• Nuclear shadowing (NS) = suppression of cross section on a nucleus 
compared to sum of cross sections on individual nucleons: σA < A σN. 

• Observed for various beams (p, 𝜋, 𝛾, 𝛾*, ν) of large energies (> 1 GeV). 

• Explained by simultaneous interaction of projectile with target nucleons → 
destructive interference among amplitudes for interaction with 1, 2, …nucleons 
→ nucleons in rear of the nucleus “see” smaller (shadowed) flux: σA~A2/3. 

• NS in photoproduction of light vector mesons ρ, ω, ɸ: 
- dynamics of soft 𝛾p and 𝛾A interaction at high energies 
- test of VMD model and role of inelastic (Gribov) shadowing  

• NS in photoproduction of heavy vector mesons J/𝜓, 𝜓(2S), Υ: 
- mechanism of nuclear shadowing: leading twist vs. HT vs. saturation  
- new constraints on nuclear gluon distribution gA(x,µ2) at small x 
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Fig. 7. Graphs for pion–deuteron scattering in the Glauber approach.

2.3. Comparison of the Gribov and Glauber results for nuclear shadowing

Originally the nuclear shadowing correction to the pion–deuteron cross section was calculated by Glauber in 1955 [113]
for the energy range E⇡ ⇠ 1 GeV, where the Lorentz dilationwas not important. In the Glauber approach, the pion–deuteron
scattering amplitude receives contributions from the impulse approximation term and from the term corresponding to the
subsequent interactions of the pion with the two nucleons of the target; the both terms are presented in Fig. 7.

The corresponding expression for the total pion–deuteron cross section reads [113]:
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with  D(Er) the deuteron wave function.
TheGribov formula for the nuclear shadowing correction (17) is the generalization of that of Glauber (19) to high energies.

Noticing that in Eq. (17), the |Ek|2 dependence of the deuteron form factor is much faster than that of the diffractive cross
section and assuming that only the elastic intermediate state contributes, Eq. (17) can be written as
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and the expression for h1/r2iD in the momentum representation,
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one readily sees that the Gribov (21) and Glauber (19) formulas coincide, if the intermediate state is purely elastic. However,
when inelastic diffraction is important, the Gribov formula leads to larger shadowing.

Despite the similarity of the results obtainedwithin the Gribov andGlauber approaches, the two approaches are based on
very different pictures of high-energy hadron–nucleus scattering. The Glauber approach neglects the Lorentz time dilation
effects related to the hadron production. Indeed, themethod is essentially quantum-mechanical and the creation of particles
in the intermediate states is not possible. As a result, the incoming hadron is formed after each interaction and scatters
successively on the target nucleons, see Fig. 7.

More generally, in the p ! 1 limit, the shadowing correction in theGlauber approach (the right graph in Fig. 7) vanishes.
This can be proven by exact calculations in any quantum field theory which accounts for particle production. Using analytic
properties of the scattering amplitudewith respect to themass squared of the produced state, one can demonstrate the exact
cancellation of the diagrams with the eikonal topology [112,114] (the right graph in Fig. 7 is an example of such diagrams).
The physical reason for this cancellation is that during the finite time it takes for the partonic fluctuation to traverse the
nucleus, the fluctuation does not have enough time (which is of the order of lc / p) to form back into the projectile.

In the Gribov approach, the projectile interacts with the target as a superposition of different configurations that interact
with different strengths, but which evolve very little during the passage through the nucleus. These configurations emerge
behind the nucleus as a distorted – but still a coherent – superposition of configurations, which, when decomposed over
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Fig. 8. The cuts of Fnp that contribute to =mFnp .

the eigenstates of the strong Hamiltonian, contains both the original hadron (elastic scattering) as well as diffractively
excited states (coherent diffraction). The Gribov approach is essentially field-theoretical and the creation of particles in the
intermediate state is properly taken into account, see Figs. 2 and 5. Hence, although the final answer for nuclear shadowing
in the Glauber and Gribov approaches is expressed through topologically different diagrams, it has the structure of the sum
of the eikonal term and the same-sign term corresponding to the contribution of other diffractive states.
Comment. A simple picture of the scattering eigenstates by Feinberg and Pomeranchuk [104] and Good and Walker [115]
provides an s-channel model for the picture of high-energy scattering employed in the Gribov approach. In particular, a
projectile being in different eigenstates interactswith the two nucleons of the deuteron. The contribution of this interactions
to the elastic scattering amplitude at t = 0 is given by the overlapping integral between the final state and projectile wave
functions.Whenexpressed through the cross section of diffractivehN scattering at t = 0withhelp of theMiettinen–Pumplin
relation [116], one finds [117] the same expression as found byGribov, see Eq. (17).Wewill further discuss the Good–Walker
picture later on.

It is worth noting that in the Gribov–Glauber approximation, the nucleus is treated as a dilute system. Namely, it is
assumed that the characteristic impact parameters for the projectile–nucleon interaction are much smaller than the typical
transverse distance between the interacting nucleon and its neighbor. The corrections to this approximation are difficult
to estimate in a model-independent way, although they may become important at the LHC energies, where the typical
impact parameters in the pp interaction are as large as 1.5 fm, which is close to the average distance to the nearest neighbor.
However, phenomenological analyses indicate that the Gribov–Glauber approximation works well for fixed-target energies
in nucleon–nucleus scattering at the beam energies EN  400 GeV, for a recent analysis, see Ref. [118]. Since in the energy
range that we discuss in the present review the impact parameters in � ⇤p diffraction do not exceed those in NN scattering
at fixed-target energies, we will neglect these effects in our analysis.

2.4. The AGK cutting rules and nuclear shadowing

In the Gribov approach, the nuclear shadowing correction to the total pion–deuteron cross section is given by the
diffractive cut of the graph, where the fast pion exchanges two Pomeronswith the target, see Fig. 5. The resulting shadowing
correction is negative and given in terms of the pion–nucleon diffractive cross section. These two features of theGribov result
can be understood using the Abramovsky–Gribov–Kancheli (AGK) cutting rules in the Reggeon field theory [119].

Let us consider the part of the pion–deuteron scattering amplitude that gives rise to the shadowing correction by
assuming that the high-energy pion interacts with the target nucleons by the Pomeron exchanges. In the symbolic form
(omitting the integration over the transverse momentum of exchanged Pomerons in the loop which does not change the
AGK rules), the amplitude reads:

Fnp = �iN(iD1)N(iD2), (24)
where D1,2 denote the complex Reggeon amplitudes; N is the real-valued particle-Reggeon vertex function which is an
operator in the space of diffractively produced particles (see below). The imaginary part of Fnp is then readily found:

=mFnp = �2N2 (=mD1=mD2 � <eD1<eD2) , (25)
where N2 = P

nhi|N|nihn|N|f id⌧n (in this expression, |ni denotes the diffractively produced state; d⌧n is its phase volume).
The additional factor of two originates from the fact that the deuteron consists of two nucleons.

Alternatively, the imaginary part of Fnp can be evaluated by summing all possible cuts of the diagram corresponding
to Fnp, see Fig. 8. Graph a corresponds to the diffractive final state in the ⇡N ! XN reaction, when the pion diffractively
dissociates into the hadronic states X . Hence, this cut is called diffractive. Graph b corresponds to the single multiplicity of
the final state Y in the ⇡D ! Y reaction; graph c corresponds to the double multiplicity in the ⇡D ! Y reaction.

Denoting the results of the cutting of graphs a, b and c in Fig. 8 as=mFa
np,=mFb

np and=mFc
np, respectively, a direct evaluation

gives [119]:
=mFa

np = 2N2 (=mD1=mD2 + <eD1<eD2) = 2N2|D1D⇤
2|,

=mFb
np = �8N2 =mD1=mD2,

=mFc
np = 4N2 =mD1=mD2. (26)

 elastic intermediate state, Glauber 1955  inelastic intermediate state, Gribov 1969
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Coherent photoproduction of ρ on nuclei  
• Measured with fixed targets (SLAC, W < 6 GeV), in Au-Au UPCs at RHIC   
(W < 12 ГэВ ), and Pb-Pb UPCs at the LHC@2.76 TeV (W=46 GeV). 

• For W < 10 GeV, explained by the vector meson dominance (VMD) model for 
𝛾→ρ transition and Glauber model for shadowing in ρA scattering: 
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Figure 1: Comparison of the calculated cross sections for ⇢ photoproduction in the gold-
gold UPC with the STAR experimental results.
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• …but fails to describe large-W RHIC (STAR), 
Adler, et al, Phys. Rev. Lett. 89 (2002) 272302; Abelev et al., Phys. Rev. C 77 
(2008) 034910; Agakishiev, et al., Phys. Rev. C 85 (2012) 014910 and 
ALICE data by factor ~1.5, Adam et al (ALICE), JHEP 1509 

(2015) 095  

• Dipole models describe data better, but strongly 
model-dependent, Goncalves, Machado, PRC 84 (2011) 011902
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Frankfurt, Strikman, Zhalov, 2002

• Best description by STARlight despite approximate treatment of Glauber model, 
Klein and Nystrand, PRC60 (1999) 014903. 
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Modified vector meson dominance (mVMD) model
• At large beam energies Е𝛾, the photon can be viewed as superposition of 
long-lived (lc ~ E𝛾) fluctuations interacting with hadrons with different cross 
sections, Gribov, Ioffe, Pomeranchuk 1965; Good, Walker, 1960 

• It can be realized by introducing the probability distribution P(σ), Blattel et al 1993 

L. Frankfurt et al. / Physics Letters B 752 (2016) 51–58 55

used for predictions and modeling of vector meson photoproduc-
tion on nuclear targets. In order to agree with the 2006 H1 data, 
the results of the VMD-DL94 and the Starlight parametrization 
should be decreased by the factor of approximately 0.7, which is 
much larger than what could be allowed by a variation of fρ . From 
the analysis presented above we can conclude the following: the 
assumption of the ρ meson dominance in the photon wave func-
tion has to be modified in order to agree to the whole set of data 
including the results of 2006 H1 measurements.

To this end, one can write the ρ meson photoproduction ampli-
tude as the dispersion integral over the masses of the intermediate 
states generated in the γ → V transitions, which will involve the 
on-mass-shell f V , the ρN cross section and the V N → ρN am-
plitude (here V denotes ρ-meson-like fluctuations of the photon 
with the invariant mass M , see our discussion in the Introduction). 
It is possible to demonstrate that inclusion of the contribution 
of the higher states can only weakly change fρ , but it can no-
ticeably reduce the cross section of the ρ meson production due 
non-diagonal transitions among different hadronic components of 
the photon and the ρ meson in the GVMD approach [9,10,49]. On 
the other hand, within the VMD approach this can be modeled by 
defining the effective ρ-nucleon cross section σ̂ρN :

σ̂ρN(Wγ p) = fρ
e

√

16π
dσ exp

γ p→ρp(t = 0)

dt
. (9)

We refer to this model as the modified vector meson dominance 
(mVMD) model; its prediction is shown by the solid red curve in 
Fig. 3. Note that a similar effect is also present in the CDM.

The Gribov–Glauber model takes into account both elastic and 
inelastic diffraction; the latter leads to the additional—as compared 
to the Glauber model—inelastic nuclear shadowing contribution 
(the Gribov shadowing correction) [20]. The standard method to 
include this effect is given by the formalism of cross section fluc-
tuations, which conveniently and successfully describes diffractive 
dissociation of protons, neutrons and pions on hydrogen and nu-
clei and inelastic nuclear shadowing in hadron–nucleus total cross 
sections [50].

Applying this formalism to the ρ meson–nucleus scattering, we 
obtain:

σ mVMD-GGM
γ A→ρ A =

(
e
fρ

)2 ∫
d2b⃗

∣∣∣∣

∫
dσ P (σ )

(
1 − e− σ

2 T A(b)
)∣∣∣∣

2

,

(10)

which generalizes Eq. (6).
The interpretation of Eq. (10) is the following: the photon fluc-

tuates into the ρ meson, which interacts with the target as a 
coherent superposition of eigenstates of the scattering operator, 
whose eigenvalues are the scattering cross sections σ ; the weight 
of a given fluctuation is given by the distribution P (σ ). Each 
state interacts with nucleons of the target nucleus according to 
the Gribov–Glauber model. The result is summed over all possible 
fluctuations, which corresponds to averaging with the distribution 
P (σ ) at the amplitude level.

Based on the similarity between the pion and ρ meson wave 
functions suggested by the additive quark model and our discus-
sion above, it is natural to assume that P (σ ) for the ρN interaction 
should be similar to the pion Pπ (σ ), which we additionally mul-
tiply by the factor of 1/(1 + (σ /σ0)

2) to take into account the 
enhanced contribution of small σ in the ρN interaction (we ex-
plained above that the contribution of small-σ fluctuations to the 
γ N → ρN amplitude is expected to be enhanced compared to the 
π N → π N one):

P (σ ) = C
1

1 + (σ /σ0)2 e−(σ /σ0−1)2/%2
. (11)

The parameterization of Eq. (11) satisfies the basic QCD constraint 
of P (σ = 0) ̸= 0 and also P (σ → ∞) → 0. The free parameters C , 
σ0 and % are found from the following constraints:

∫
dσ P (σ ) = 1 ,

∫
dσ P (σ )σ = ⟨σ ⟩ ,

∫
dσ P (σ )σ 2 = ⟨σ ⟩2(1 + ωσ ) , (12)

where ⟨σ ⟩ = σ̂ρN in the mVMD model, see Eq. (9).
The quantity ωσ parametrizes the dispersion of P (σ ) around its 

mean value ⟨σ ⟩, i.e., it characterizes the strength of cross section 
fluctuations. It can be determined using experimental information 
on the photon diffraction dissociation, in particular, the factor-
ization of the photon and the pion diffraction dissociation cross 
sections scaled by the respective total cross sections. In detail, the 
measurement [51] of inclusive diffraction dissociation of photons 
on hydrogen, γ p → Xp, in the range of 75 < Eγ < 148 GeV and 
M2

X/s < 0.1 (M X denotes the produced diffractive mass) and the 
control measurement of inclusive diffraction dissociation of pions 
in the π p → Xp reaction at Eπ = 100 GeV showed that the re-
spective M2

X distributions scaled by the total cross sections are 
very similar in the photon and pion cases. For the cross sections 
integrated over M2

X , this observation means that:

dσγ p→Xp(t = 0)/dt

σγ p
≈ dσπ p→Xp(t = 0)/dt

σπ p
= ωπ

σ

16π
σπ N , (13)

where in the last equation we expressed the cross section of pion 
diffraction dissociation in terms of ωπ

σ characterizing the Pπ (σ )
distribution and the total pion–nucleon cross section σπ N .

On the other hand, using the formalism of cross section fluctu-
ations for the ρ-nucleon scattering and the mVMD model for the 
γ –ρ transition, we obtain for the cross section of photon diffrac-
tion dissociation [compare to Eq. (5)]:

dσγ p→Xp(t = 0)

dt
= 1

16π

(
e
fρ

)2 [∫
dσ P (σ )σ 2 − (σ̂ρN )2

]

= ωσ

16π

(
e
fρ

)2

(σ̂ρN)2 , (14)

where the diffraction dissociation final state X by construction 
does not contain ρ . The inelastic final state X is selected exper-
imentally by analyzing the differential cross section as a function 
of the produced diffractive mass M X and corresponds to the val-
ues of M X beyond the ρ peak, M2

X > 1.5–2 GeV2 [51]. Substituting 
Eq. (14) in Eq. (13) we obtain the desired constraint on ωσ :

ωσ =
f 2
ρ

e2

σπ Nσγ p

σ̂ 2
ρN

ωπ
σ , (15)

where the total photon–proton cross section σγ p is taken from the 
fit to data [4].

For the pion projectile, we use the constituent quark counting 
rule for the ratio of the nucleon–nucleon and the pion–nucleon 
total cross sections and obtain:

ωπ
σ (s) = 3

2
ωN

σ (s) . (16)

Here we effectively use validity of the limiting fragmentation 
which is well established experimentally.

The pattern of cross section fluctuations for the nucleon projec-
tile has the following dependence of the invariant collision energy 
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Fig. 1. The γ A → ρ A cross section as a function of Wγ p . The VMD-GM (red dashed 
curve) and VMD-IA (blue dot-dashed line) predictions for a 208Pb target based on 
the DL94 parametrization of the ρN cross section are compared to the experimental 
values extracted from the STAR and ALICE UPC measurements.

the IA calculation, but it still overestimates the experimental cross 
sections by the factor of 1.5–2. Besides, the energy dependence 
is different: while the calculated cross sections slowly grow with 
energy, the experimental values slightly decrease or stay almost 
constant. Note that the calculated values of the γ Au → ρAu cross 
section are smaller than those for the lead target by approximately 
5% for all energies. Hence, we neglect this difference throughout 
our paper and perform our calculations for lead keeping in mind 
the 5% reduction of the nuclear cross section when we compare 
our calculations with the STAR data.

To check the accuracy of the Glauber model calculations in 
Eq. (6) in combination with the DL94 pion–nucleon cross section, 
we calculated the hadron–nucleus total and inelastic cross sections 
for the neutron and pion projectiles in the Glauber approach:

σ tot
h A = 2

∫
d2b⃗

[
1 − e− σhN

2 T A(b)
]

,

σ in
h A =

∫
d2b⃗

[
1 − e−σhN T A(b)

]
. (8)

The neutron–nucleon cross section σnN is estimated using the ad-
ditive quark model counting rule relation [3] σnN = 3/2σπ N , where 
the pion–nucleon cross section is given by Eq. (7). The results of 
our calculations are compared to the data [24,45–47] in Fig. 2. One 
can see from the figure that the calculations agree very well with 
the measurements. This means that the reasons of the disagree-
ment of similar calculations of the γ A → ρ A cross section with 
the STAR and ALICE data are in specifics of the light vector meson 
photoproduction process.

This conclusion is confirmed by our observation that the latest 
2006 H1 data on the γ p → ρp cross section [19] (we extrapolated 
the H1 cross sections given at −t = 0.01 GeV2 to −t = 0 assuming 
the eBt dependence with the value of the slope B reported by H1) 
disagrees with the normalization of the forward cross section cal-
culated using the DL94 model by the factor of 0.84. This is seen in 
Fig. 3, where the forward γ p → ρp cross section evaluated using 
Eqs. (5) and (7) (the green dot-dashed curve labeled “VMD-DL94”) 
is compared to the whole bulk of the data. Also, for comparison, 
we show the parametrization of the forward γ p → ρp cross sec-
tion from the Starlight Monte Carlo generator [48], which is widely 

Fig. 2. Upper and middle: Comparison of the total and inelastic neutron–nucleus 
cross sections calculated in the Glauber model with the available data. Bottom: The 
total pion–nucleus cross section as a function of √sπ N : the Glauber model calcula-
tions with the DL94 model for σπ N are compared to the available data.

Fig. 3. Comparison of the experimentally measured forward cross section of coher-
ent ρ photoproduction on the proton [19,38–43] with the VDM-DL94 model and 
the Starlight parametrization. The red solid line shows the modified VMD (mVMD) 
parametrization (see text for details). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

→  from  

                → from measured 𝛾 
diffract. dissociation into large 
masses, Chapin 1985

• Shape like for pion, Blattel et al, 1993 + small-σ 
enhancement to take into account smaller 
size of ρ in 𝛾p→ρp than in σ𝜋N  →
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used for predictions and modeling of vector meson photoproduc-
tion on nuclear targets. In order to agree with the 2006 H1 data, 
the results of the VMD-DL94 and the Starlight parametrization 
should be decreased by the factor of approximately 0.7, which is 
much larger than what could be allowed by a variation of fρ . From 
the analysis presented above we can conclude the following: the 
assumption of the ρ meson dominance in the photon wave func-
tion has to be modified in order to agree to the whole set of data 
including the results of 2006 H1 measurements.

To this end, one can write the ρ meson photoproduction ampli-
tude as the dispersion integral over the masses of the intermediate 
states generated in the γ → V transitions, which will involve the 
on-mass-shell f V , the ρN cross section and the V N → ρN am-
plitude (here V denotes ρ-meson-like fluctuations of the photon 
with the invariant mass M , see our discussion in the Introduction). 
It is possible to demonstrate that inclusion of the contribution 
of the higher states can only weakly change fρ , but it can no-
ticeably reduce the cross section of the ρ meson production due 
non-diagonal transitions among different hadronic components of 
the photon and the ρ meson in the GVMD approach [9,10,49]. On 
the other hand, within the VMD approach this can be modeled by 
defining the effective ρ-nucleon cross section σ̂ρN :

σ̂ρN(Wγ p) = fρ
e

√

16π
dσ exp

γ p→ρp(t = 0)

dt
. (9)

We refer to this model as the modified vector meson dominance 
(mVMD) model; its prediction is shown by the solid red curve in 
Fig. 3. Note that a similar effect is also present in the CDM.

The Gribov–Glauber model takes into account both elastic and 
inelastic diffraction; the latter leads to the additional—as compared 
to the Glauber model—inelastic nuclear shadowing contribution 
(the Gribov shadowing correction) [20]. The standard method to 
include this effect is given by the formalism of cross section fluc-
tuations, which conveniently and successfully describes diffractive 
dissociation of protons, neutrons and pions on hydrogen and nu-
clei and inelastic nuclear shadowing in hadron–nucleus total cross 
sections [50].

Applying this formalism to the ρ meson–nucleus scattering, we 
obtain:

σ mVMD-GGM
γ A→ρ A =

(
e
fρ

)2 ∫
d2b⃗

∣∣∣∣

∫
dσ P (σ )

(
1 − e− σ

2 T A(b)
)∣∣∣∣

2

,

(10)

which generalizes Eq. (6).
The interpretation of Eq. (10) is the following: the photon fluc-

tuates into the ρ meson, which interacts with the target as a 
coherent superposition of eigenstates of the scattering operator, 
whose eigenvalues are the scattering cross sections σ ; the weight 
of a given fluctuation is given by the distribution P (σ ). Each 
state interacts with nucleons of the target nucleus according to 
the Gribov–Glauber model. The result is summed over all possible 
fluctuations, which corresponds to averaging with the distribution 
P (σ ) at the amplitude level.

Based on the similarity between the pion and ρ meson wave 
functions suggested by the additive quark model and our discus-
sion above, it is natural to assume that P (σ ) for the ρN interaction 
should be similar to the pion Pπ (σ ), which we additionally mul-
tiply by the factor of 1/(1 + (σ /σ0)

2) to take into account the 
enhanced contribution of small σ in the ρN interaction (we ex-
plained above that the contribution of small-σ fluctuations to the 
γ N → ρN amplitude is expected to be enhanced compared to the 
π N → π N one):

P (σ ) = C
1

1 + (σ /σ0)2 e−(σ /σ0−1)2/%2
. (11)

The parameterization of Eq. (11) satisfies the basic QCD constraint 
of P (σ = 0) ̸= 0 and also P (σ → ∞) → 0. The free parameters C , 
σ0 and % are found from the following constraints:

∫
dσ P (σ ) = 1 ,

∫
dσ P (σ )σ = ⟨σ ⟩ ,

∫
dσ P (σ )σ 2 = ⟨σ ⟩2(1 + ωσ ) , (12)

where ⟨σ ⟩ = σ̂ρN in the mVMD model, see Eq. (9).
The quantity ωσ parametrizes the dispersion of P (σ ) around its 

mean value ⟨σ ⟩, i.e., it characterizes the strength of cross section 
fluctuations. It can be determined using experimental information 
on the photon diffraction dissociation, in particular, the factor-
ization of the photon and the pion diffraction dissociation cross 
sections scaled by the respective total cross sections. In detail, the 
measurement [51] of inclusive diffraction dissociation of photons 
on hydrogen, γ p → Xp, in the range of 75 < Eγ < 148 GeV and 
M2

X/s < 0.1 (M X denotes the produced diffractive mass) and the 
control measurement of inclusive diffraction dissociation of pions 
in the π p → Xp reaction at Eπ = 100 GeV showed that the re-
spective M2

X distributions scaled by the total cross sections are 
very similar in the photon and pion cases. For the cross sections 
integrated over M2

X , this observation means that:

dσγ p→Xp(t = 0)/dt

σγ p
≈ dσπ p→Xp(t = 0)/dt

σπ p
= ωπ

σ

16π
σπ N , (13)

where in the last equation we expressed the cross section of pion 
diffraction dissociation in terms of ωπ

σ characterizing the Pπ (σ )
distribution and the total pion–nucleon cross section σπ N .

On the other hand, using the formalism of cross section fluctu-
ations for the ρ-nucleon scattering and the mVMD model for the 
γ –ρ transition, we obtain for the cross section of photon diffrac-
tion dissociation [compare to Eq. (5)]:

dσγ p→Xp(t = 0)

dt
= 1

16π

(
e
fρ

)2 [∫
dσ P (σ )σ 2 − (σ̂ρN )2

]

= ωσ

16π

(
e
fρ

)2

(σ̂ρN)2 , (14)

where the diffraction dissociation final state X by construction 
does not contain ρ . The inelastic final state X is selected exper-
imentally by analyzing the differential cross section as a function 
of the produced diffractive mass M X and corresponds to the val-
ues of M X beyond the ρ peak, M2

X > 1.5–2 GeV2 [51]. Substituting 
Eq. (14) in Eq. (13) we obtain the desired constraint on ωσ :

ωσ =
f 2
ρ

e2

σπ Nσγ p

σ̂ 2
ρN

ωπ
σ , (15)

where the total photon–proton cross section σγ p is taken from the 
fit to data [4].

For the pion projectile, we use the constituent quark counting 
rule for the ratio of the nucleon–nucleon and the pion–nucleon 
total cross sections and obtain:

ωπ
σ (s) = 3

2
ωN

σ (s) . (16)

Here we effectively use validity of the limiting fragmentation 
which is well established experimentally.

The pattern of cross section fluctuations for the nucleon projec-
tile has the following dependence of the invariant collision energy 

d�(�p ! ⇢p)/dt
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Photoproduction of ρ on Pb in mVMD+Gribov-
Glauber model 

• With cross section fluctuations: 
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Fig. 4. The σγ A→ρ A cross section as a function of Wγ p . The theoretical predictions 
using the mVMD model for the γ p → ρp cross section and the Gribov–Glauber 
model with cross section fluctuations for the γ A → ρ A amplitude are compared to 
the STAR (circle) and ALICE (triangle) data. The shaded area reflects the theoretical 
uncertainty associated with the parameter β characterizing the strength of cross 
section fluctuations (see text for details).

√
s: the cross section fluctuations reach a broad maximum for 

24 <
√

s < 200 GeV, are most likely small for 
√

s < 24 GeV and 
gradually decrease for 

√
s > 200 GeV toward the Tevatron and LHC 

energies. Therefore, we use the following parametrization for the 
parameter ωN

σ describing the dispersion of the fluctuations:

ωN
σ (s) =

⎧
⎪⎪⎨

⎪⎪⎩

β
√

s/24 ,
√

s < 24GeV ,

β , 24 <
√

s < 200 GeV ,

β − 0.15 ln(
√

s/200) + 0.03(ln(
√

s/200))2 ,√
s > 200 GeV ,

(17)

where the parameter β ≈ 0.25–0.35 was determined from the 
analysis of pp and p̄p data [28].

It is known [22] from studies of corrections to the Glauber 
model for total proton–nucleus cross sections that suppression due 
to the inelastic shadowing is almost compensated by the effect of 
short-range correlations (SRC) in the wave function of the target 
nucleus. We included the effect of SRC by the following replace-
ment [52]:

T A(b) → T A(b) + ξc
σρN

2

∫
dzρ2

A(b, z) , (18)

where ξc = 0.74 fm is the correlation length.
Our predictions for the γ A → ρ A cross section as a function 

of Wγ p are presented in Fig. 4. The shaded area spanned by two 
red curves presents the results of the calculation using the mVMD 
model for the γ p → ρp cross section and the Gribov–Glauber 
model with the effect of cross section fluctuations, see Eq. (10). 
The shaded area shows the uncertainty of our calculations due to 
the variation of the fluctuation strength ωσ by changing β in the 
range 0.25 ≤ β ≤ 0.35. Our predictions are compared to the STAR 
(circle) and ALICE (triangle) data. One can clearly see from the fig-
ure that the inclusion of the inelastic nuclear shadowing enables 
us to explain the discrepancy between the UPC data on coherent ρ
photoproduction on nuclei at large Wγ p and the theoretical de-
scription of this process in the framework of the VMD-GM with 
the DL94 parametrization of the ρN cross section.

4. Discussion

The effect of the inelastic shadowing correction, which we 
demonstrate in these calculations, can be checked in the UPC mea-
surements at the LHC. The inelastic nuclear shadowing changes the 
rapidity distribution of coherent ρ photoproduction in ion UPCs. 
Fig. 5 presents the results of our calculation of dσPbPb→ρPbPb/dy, 

Fig. 5. The rapidity distribution of coherent ρ photoproduction in Pb–Pb UPCs at √
sNN = 2.76 TeV. Theoretical predictions of the mVDM-GGM (red solid curves with 

the shaded area showing the uncertainty due to the variation of the fluctuation 
strength), the mVMD-GM (blue dashed curve) and the VMD-GM (green dot-dashed 
curve) are compared to the ALICE data (see text for details).

see Eq. (1), as a function of the ρ meson rapidity y in Pb–Pb UPCs 
at the LHC at √sNN = 2.76 TeV. The shaded area spanned by two 
red curves corresponds to the combination of the mVMD model 
and the Gribov–Glauber model for nuclear shadowing with cross 
section fluctuations (the shaded area shows the uncertainty of the 
calculations related to the variation of the fluctuation strength due 
to the change of β in the range 0.25 ≤ β ≤ 0.35); the blue dashed 
curve is the result of the calculation in mVMD-GM, i.e. without 
cross section fluctuations; the green dot-dashed curve is the result 
of the VMD-DL94 model combined with the Glauber model. The 
shape of the rapidity distribution predicted by the mVMD-GGM 
calculations is due to specifics of symmetric UPCs and the inter-
play between the energy dependence of the inelastic shadowing 
correction and the photon flux.

The predicted shape of dσPbPb→ρPbPb/dy is different from the 
almost flat dσPbPb→ρPbPb/dy distribution obtained in the VDM-GM 
and Starlight approaches and is also in stark contrast with the 
calculations [53,54] in the color dipole model approach predict-
ing a bell-like shape for dσPbPb→ρPbPb/dy with the maximum at 
y = 0 and small values of dσPbPb→ρPbPb/dy at y ≈ −4.5 corre-
sponding to Wγ p ≈ 5–10 GeV, i.e., to the energy range of the 
STAR measurements. From Fig. 4 it is seen that the experimen-
tal photoproduction cross section is almost constant in the energy 
range spanning the STAR and ALICE energies, σγ Pb→ρPb ≈ 2 mb. In 
UPCs at y = 0, the contributions from both colliding nuclei serv-
ing as a target are equal, while at |y| = 4.5 the contribution of 
the low energy photon dominates. The photon fluxes are calcu-
lated in all studies similarly and with good accuracy, Nγ /Pb(y =
0) = 108 and Nγ /Pb(y = −4.5) = 250. Then one easily obtains that 
σPbPb→PbPbρ(|y| = 4.5) ≈ 500 mb > σPbPb→PbPbρ(y = 0) ≈ 430 mb. 
These estimates confirm that the two-bumped shape of the rapid-
ity distribution seems to be reasonable.

The good agreement with the ALICE result allows us to predict 
the value of the cross section of coherent ρ photoproduction in 
Pb–Pb UPCs at √sNN = 5.02 TeV in Run 2 at the LHC:

dσ (y = 0)

dy
= 560 ± 25 mb . (19)

Examining the calculations of elastic photoproduction of ρ
mesons on nuclei in the dipole model framework [53,54], one 
notes that some of them describe the STAR and ALICE data while 

56 L. Frankfurt et al. / Physics Letters B 752 (2016) 51–58

Fig. 4. The σγ A→ρ A cross section as a function of Wγ p . The theoretical predictions 
using the mVMD model for the γ p → ρp cross section and the Gribov–Glauber 
model with cross section fluctuations for the γ A → ρ A amplitude are compared to 
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gradually decrease for 

√
s > 200 GeV toward the Tevatron and LHC 

energies. Therefore, we use the following parametrization for the 
parameter ωN

σ describing the dispersion of the fluctuations:

ωN
σ (s) =

⎧
⎪⎪⎨

⎪⎪⎩

β
√

s/24 ,
√

s < 24GeV ,

β , 24 <
√

s < 200 GeV ,

β − 0.15 ln(
√

s/200) + 0.03(ln(
√

s/200))2 ,√
s > 200 GeV ,

(17)

where the parameter β ≈ 0.25–0.35 was determined from the 
analysis of pp and p̄p data [28].

It is known [22] from studies of corrections to the Glauber 
model for total proton–nucleus cross sections that suppression due 
to the inelastic shadowing is almost compensated by the effect of 
short-range correlations (SRC) in the wave function of the target 
nucleus. We included the effect of SRC by the following replace-
ment [52]:

T A(b) → T A(b) + ξc
σρN
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∫
dzρ2

A(b, z) , (18)

where ξc = 0.74 fm is the correlation length.
Our predictions for the γ A → ρ A cross section as a function 

of Wγ p are presented in Fig. 4. The shaded area spanned by two 
red curves presents the results of the calculation using the mVMD 
model for the γ p → ρp cross section and the Gribov–Glauber 
model with the effect of cross section fluctuations, see Eq. (10). 
The shaded area shows the uncertainty of our calculations due to 
the variation of the fluctuation strength ωσ by changing β in the 
range 0.25 ≤ β ≤ 0.35. Our predictions are compared to the STAR 
(circle) and ALICE (triangle) data. One can clearly see from the fig-
ure that the inclusion of the inelastic nuclear shadowing enables 
us to explain the discrepancy between the UPC data on coherent ρ
photoproduction on nuclei at large Wγ p and the theoretical de-
scription of this process in the framework of the VMD-GM with 
the DL94 parametrization of the ρN cross section.

4. Discussion

The effect of the inelastic shadowing correction, which we 
demonstrate in these calculations, can be checked in the UPC mea-
surements at the LHC. The inelastic nuclear shadowing changes the 
rapidity distribution of coherent ρ photoproduction in ion UPCs. 
Fig. 5 presents the results of our calculation of dσPbPb→ρPbPb/dy, 
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see Eq. (1), as a function of the ρ meson rapidity y in Pb–Pb UPCs 
at the LHC at √sNN = 2.76 TeV. The shaded area spanned by two 
red curves corresponds to the combination of the mVMD model 
and the Gribov–Glauber model for nuclear shadowing with cross 
section fluctuations (the shaded area shows the uncertainty of the 
calculations related to the variation of the fluctuation strength due 
to the change of β in the range 0.25 ≤ β ≤ 0.35); the blue dashed 
curve is the result of the calculation in mVMD-GM, i.e. without 
cross section fluctuations; the green dot-dashed curve is the result 
of the VMD-DL94 model combined with the Glauber model. The 
shape of the rapidity distribution predicted by the mVMD-GGM 
calculations is due to specifics of symmetric UPCs and the inter-
play between the energy dependence of the inelastic shadowing 
correction and the photon flux.

The predicted shape of dσPbPb→ρPbPb/dy is different from the 
almost flat dσPbPb→ρPbPb/dy distribution obtained in the VDM-GM 
and Starlight approaches and is also in stark contrast with the 
calculations [53,54] in the color dipole model approach predict-
ing a bell-like shape for dσPbPb→ρPbPb/dy with the maximum at 
y = 0 and small values of dσPbPb→ρPbPb/dy at y ≈ −4.5 corre-
sponding to Wγ p ≈ 5–10 GeV, i.e., to the energy range of the 
STAR measurements. From Fig. 4 it is seen that the experimen-
tal photoproduction cross section is almost constant in the energy 
range spanning the STAR and ALICE energies, σγ Pb→ρPb ≈ 2 mb. In 
UPCs at y = 0, the contributions from both colliding nuclei serv-
ing as a target are equal, while at |y| = 4.5 the contribution of 
the low energy photon dominates. The photon fluxes are calcu-
lated in all studies similarly and with good accuracy, Nγ /Pb(y =
0) = 108 and Nγ /Pb(y = −4.5) = 250. Then one easily obtains that 
σPbPb→PbPbρ(|y| = 4.5) ≈ 500 mb > σPbPb→PbPbρ(y = 0) ≈ 430 mb. 
These estimates confirm that the two-bumped shape of the rapid-
ity distribution seems to be reasonable.

The good agreement with the ALICE result allows us to predict 
the value of the cross section of coherent ρ photoproduction in 
Pb–Pb UPCs at √sNN = 5.02 TeV in Run 2 at the LHC:

dσ (y = 0)

dy
= 560 ± 25 mb . (19)

Examining the calculations of elastic photoproduction of ρ
mesons on nuclei in the dipole model framework [53,54], one 
notes that some of them describe the STAR and ALICE data while 
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used for predictions and modeling of vector meson photoproduc-
tion on nuclear targets. In order to agree with the 2006 H1 data, 
the results of the VMD-DL94 and the Starlight parametrization 
should be decreased by the factor of approximately 0.7, which is 
much larger than what could be allowed by a variation of fρ . From 
the analysis presented above we can conclude the following: the 
assumption of the ρ meson dominance in the photon wave func-
tion has to be modified in order to agree to the whole set of data 
including the results of 2006 H1 measurements.

To this end, one can write the ρ meson photoproduction ampli-
tude as the dispersion integral over the masses of the intermediate 
states generated in the γ → V transitions, which will involve the 
on-mass-shell f V , the ρN cross section and the V N → ρN am-
plitude (here V denotes ρ-meson-like fluctuations of the photon 
with the invariant mass M , see our discussion in the Introduction). 
It is possible to demonstrate that inclusion of the contribution 
of the higher states can only weakly change fρ , but it can no-
ticeably reduce the cross section of the ρ meson production due 
non-diagonal transitions among different hadronic components of 
the photon and the ρ meson in the GVMD approach [9,10,49]. On 
the other hand, within the VMD approach this can be modeled by 
defining the effective ρ-nucleon cross section σ̂ρN :

σ̂ρN(Wγ p) = fρ
e

√

16π
dσ exp

γ p→ρp(t = 0)

dt
. (9)

We refer to this model as the modified vector meson dominance 
(mVMD) model; its prediction is shown by the solid red curve in 
Fig. 3. Note that a similar effect is also present in the CDM.

The Gribov–Glauber model takes into account both elastic and 
inelastic diffraction; the latter leads to the additional—as compared 
to the Glauber model—inelastic nuclear shadowing contribution 
(the Gribov shadowing correction) [20]. The standard method to 
include this effect is given by the formalism of cross section fluc-
tuations, which conveniently and successfully describes diffractive 
dissociation of protons, neutrons and pions on hydrogen and nu-
clei and inelastic nuclear shadowing in hadron–nucleus total cross 
sections [50].

Applying this formalism to the ρ meson–nucleus scattering, we 
obtain:

σ mVMD-GGM
γ A→ρ A =

(
e
fρ

)2 ∫
d2b⃗

∣∣∣∣

∫
dσ P (σ )

(
1 − e− σ

2 T A(b)
)∣∣∣∣

2

,

(10)

which generalizes Eq. (6).
The interpretation of Eq. (10) is the following: the photon fluc-

tuates into the ρ meson, which interacts with the target as a 
coherent superposition of eigenstates of the scattering operator, 
whose eigenvalues are the scattering cross sections σ ; the weight 
of a given fluctuation is given by the distribution P (σ ). Each 
state interacts with nucleons of the target nucleus according to 
the Gribov–Glauber model. The result is summed over all possible 
fluctuations, which corresponds to averaging with the distribution 
P (σ ) at the amplitude level.

Based on the similarity between the pion and ρ meson wave 
functions suggested by the additive quark model and our discus-
sion above, it is natural to assume that P (σ ) for the ρN interaction 
should be similar to the pion Pπ (σ ), which we additionally mul-
tiply by the factor of 1/(1 + (σ /σ0)

2) to take into account the 
enhanced contribution of small σ in the ρN interaction (we ex-
plained above that the contribution of small-σ fluctuations to the 
γ N → ρN amplitude is expected to be enhanced compared to the 
π N → π N one):

P (σ ) = C
1

1 + (σ /σ0)2 e−(σ /σ0−1)2/%2
. (11)

The parameterization of Eq. (11) satisfies the basic QCD constraint 
of P (σ = 0) ̸= 0 and also P (σ → ∞) → 0. The free parameters C , 
σ0 and % are found from the following constraints:

∫
dσ P (σ ) = 1 ,

∫
dσ P (σ )σ = ⟨σ ⟩ ,

∫
dσ P (σ )σ 2 = ⟨σ ⟩2(1 + ωσ ) , (12)

where ⟨σ ⟩ = σ̂ρN in the mVMD model, see Eq. (9).
The quantity ωσ parametrizes the dispersion of P (σ ) around its 

mean value ⟨σ ⟩, i.e., it characterizes the strength of cross section 
fluctuations. It can be determined using experimental information 
on the photon diffraction dissociation, in particular, the factor-
ization of the photon and the pion diffraction dissociation cross 
sections scaled by the respective total cross sections. In detail, the 
measurement [51] of inclusive diffraction dissociation of photons 
on hydrogen, γ p → Xp, in the range of 75 < Eγ < 148 GeV and 
M2

X/s < 0.1 (M X denotes the produced diffractive mass) and the 
control measurement of inclusive diffraction dissociation of pions 
in the π p → Xp reaction at Eπ = 100 GeV showed that the re-
spective M2

X distributions scaled by the total cross sections are 
very similar in the photon and pion cases. For the cross sections 
integrated over M2

X , this observation means that:

dσγ p→Xp(t = 0)/dt

σγ p
≈ dσπ p→Xp(t = 0)/dt

σπ p
= ωπ

σ

16π
σπ N , (13)

where in the last equation we expressed the cross section of pion 
diffraction dissociation in terms of ωπ

σ characterizing the Pπ (σ )
distribution and the total pion–nucleon cross section σπ N .

On the other hand, using the formalism of cross section fluctu-
ations for the ρ-nucleon scattering and the mVMD model for the 
γ –ρ transition, we obtain for the cross section of photon diffrac-
tion dissociation [compare to Eq. (5)]:

dσγ p→Xp(t = 0)

dt
= 1

16π

(
e
fρ

)2 [∫
dσ P (σ )σ 2 − (σ̂ρN )2

]

= ωσ

16π

(
e
fρ

)2

(σ̂ρN)2 , (14)

where the diffraction dissociation final state X by construction 
does not contain ρ . The inelastic final state X is selected exper-
imentally by analyzing the differential cross section as a function 
of the produced diffractive mass M X and corresponds to the val-
ues of M X beyond the ρ peak, M2

X > 1.5–2 GeV2 [51]. Substituting 
Eq. (14) in Eq. (13) we obtain the desired constraint on ωσ :

ωσ =
f 2
ρ

e2

σπ Nσγ p

σ̂ 2
ρN

ωπ
σ , (15)

where the total photon–proton cross section σγ p is taken from the 
fit to data [4].

For the pion projectile, we use the constituent quark counting 
rule for the ratio of the nucleon–nucleon and the pion–nucleon 
total cross sections and obtain:

ωπ
σ (s) = 3

2
ωN

σ (s) . (16)

Here we effectively use validity of the limiting fragmentation 
which is well established experimentally.

The pattern of cross section fluctuations for the nucleon projec-
tile has the following dependence of the invariant collision energy 

• “Two birds with one stone”: we describe correctly the elementary 𝛾p→ρp 
cross section and include inelastic Gribov shadowing in σ𝛾A→ρA 

•  → describe well normalization and W-dependence σ𝛾A→ρA, Frankfurt, Guzey, Strikman, 
Zhalov, PLB 732 (2016) 51
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• Combination of mVMD and Gribov-Glauber models: 
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FIG. 2: The dσPbPb→ρPbPb(y)/dy cross section as a function of the ρ meson rapidity y at
√
sNN = 5.02 TeV. Predictions of

the combination of the modified VMD and Gribov–Glauber models (mVMD-GGM) are shown for the four considered reaction
channels. The solid curves correspond to the calculation using the nominal value of ωρσ; the shaded areas show the theoretical
uncertainty in modeling of this quantity. The dashed curves labeled “one-side” show the contribution of the first term in
Eq. (1).

where V stands for J/ψ or ψ(2S) mesons (ψ(2S) is the first radially-excited charmonium state with JPC = 1−−);
αs(µ2) is the strong coupling constant; xgp(x, µ2) is the gluon density of the proton evaluated at the light-cone
momentum fraction x = M2

V /W
2
γp and the resolution scale µ; Cp(µ2) is the normalization factor depending on

approximations used in the evaluation of the γp → V p amplitude.
In the case of J/ψ photoproduction on the proton, Eq. (9) was first derived in [14] using the non-relativistic approxi-

mation for the J/ψ wave function; it was found that µ2 = M2
J/ψ/4 = 2.4 GeV2 and Cp(µ2) = π3ΓeeM3

J/ψ/(48αe.m.µ8),

where Γee is the J/ψ → e+e− decay width and αe.m. is the fine-structure constant. Going beyond this approxima-
tion [41, 42], one obtains Cp(µ2) = F 2(µ2)R̄2

g(1 + η2)π3ΓeeM3
J/ψ/(48αe.m.µ8), where η is the ratio of the real to the

imaginary parts of the γp → J/ψp scattering amplitude, R̄g ≈ 1.2 is the skewness factor describing the enhancement
of the γp → J/ψp amplitude due to its off-forward kinematics, F 2(µ2) ≈ 0.5 is the factor taking into account the
effects of the quark transverse momentum in the J/ψ wave function. Note that Eq. (9) can also be generalized beyond
the leading logarithmic approximation by including the gluon transverse momenta in the gluon ladder [41].
For the case of ψ(2S), the same framework is immediately applicable with µ2 = M2

ψ(2S)/4 = 3.4 GeV2 in the

non-relativistic limit for the ψ(2S) wave function [43].
The non-zero charm quark transverse momentum in the charmonium wave function leads to an effective increase

of the resolution scale µ2 at which the gluon distribution in Eq. (9) is probed. In our approach, we determine µ2
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FIG. 3: The dσPbPb→φPbPb(y)/dy cross section as a function of the φ meson rapidity y at
√
sNN = 5.02 TeV. For notation, see

Fig. 2.

phenomenologically by requiring that Eq. (9) with a wide array of modern leading-order (LO) gluon distributions of
the proton describes the high-Wγp dependence of the σγp→J/ψp(Wγp) cross section measured at HERA and the LHC
by the LHCb collaboration and the σγp→ψ(2S)p(Wγp) cross section measured at HERA. This gives µ2 ≈ 3 GeV2 for
J/ψ [16] and µ2 ≈ 4 GeV2 for ψ(2S) [44], respectively. The factor of Cp(µ2) is chosen to reproduce the normalization
of the respective experimental cross sections at W = 100 GeV. The resulting LO pQCD framework based on Eq. (9)
provides good description of all high-energy HERA and LHC data on charmonium (J/ψ and ψ(2S)) photoproduction
on the proton.
The application of Eq. (9) to nuclear targets allows one to consider coherent photoproduction of charmonia on

nuclei in pQCD. The corresponding cross section integrated over the momentum transfer t reads [16]:

σγA→V A(Wγp) = CA(µ
2)[αs(µ

2)xgA(x, µ
2)]2ΦA(tmin)

=
CA(µ2)

Cp(µ2)

dσγp→V p(Wγp, t = 0)

dt

[

xgA(x, µ2)

Axgp(x, µ2)

]2

ΦA(tmin) , (10)

where xgA(x, µ2) is the nuclear gluon distribution; ΦA(tmin) =
∫ tmin

−∞
dt|FA(t)|2, where FA(t) is the nuclear form

factor; tmin = −x2m2
N is the minimal momentum transfer squared, where mN is the nucleon mass; CA(µ2)/Cp(µ2) =

(1+ η2A)R̄
2
g,A/[(1+ η2)R̄2

g] ≈ 0.9, where R̄g,A and ηA are the skewness and the ratio of the real to the imaginary parts
of the γA → V A scattering amplitude, respectively.
One can see from Eq. (10) that exclusive photoproduction of charmonia on nuclei directly probes the gluon nuclear

shadowing quantified by the ratio Rg(x, µ2) = xgA(x, µ2)/[Axgp(x, µ2)]. In particular, a comparison of the nuclear

- ρ: P(σ) from data 
- ɸ: P(σ) from σɸN 
(Donnachie, Landshoff, 1995) + 
constituent quark 

• “Ears” for ρ: effect of 
Reggeon in σρN 

• Change of shape for 0nXn-
channel due to large W𝛾p 
enhancement of photon flux

0nXn-channel: e.m. excitation of 
either of nuclei with forward 
emission > 1 neutron in ZDC
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News from QM2017 on ρ photoproduction on 
nuclei in Pb-Pb UPCs in Run 2  

• Preliminary ALICE result on Pb-Pb UPCs at √sNN=5.02 TeV: cross section is almost 
the same as in Run 1 
• Cannot be described by our mVMD-GG approach and color dipole models 
• Excellent description by STARlight    

D. Horak (ALICE), poster at 
conference “Quark Matter 2017”,  
Feb 6-11, 2017

Different theoretical approaches 
predicts very different shapes of 
rapidity dependence.

ALICE Measurements on ρ𝟎 Photoproduction
in Pb-Pb Ultra-peripheral Collisions

David Horák for the ALICE Collaboration
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

The powerful photon fluxes of relativistic nuclei provide a possibility to study photonuclear and two-photon interactions in ultra-peripheral collisions (UPC) where the nuclei do not overlap and no strong nuclear
interactions occur. Within the Vector Meson Dominance Model (VDM), the 𝜌0 contribution prevails in the QCD part of the photon structure function and 𝛾 + 𝐴 −> 𝜌0 + 𝐴 process in heavy-ion UPC is a tool to test the, so-
called, black disk regime where the target nucleus appears like a black disk and the total 𝜌0 + 𝐴 cross section reaches its limit. RHIC and first LHC results have deviated from some Glauber+VDM calculations, which thus
call for new data. ALICE reports measurements on 𝜌0 photoproduction cross sections in Pb-Pb UPC with data taken at sNN =2.76 TeV and new measurements with data taken at sNN =5.02 TeV. The mid-rapidity cross
section of coherent 𝜌0 photoproduction is measured, and it is compared to theoretical models.

Abstract

• EM field of a relativistic particle 
acts as a beam of quasi-real 
photons

• Intensity of EM field 
proportional to 𝑍12 and 𝑍22

• Impact parameter larger than a 
sum of radii of incoming 
particles = UPC

• EM interactions:
• photon – photon
• photon– nucleus (proton)

• ρ0 gives the dominant contribution to the hadronic structure of the 
photon

• Previous measurements at sNN = 2.76 TeV by ALICE [1]
• STARLIGHT and GM (Gonçalves and Machado) models are 

compatible with measurement, but GDL (Glauber-
Donnachie-Landshoff) is about factor 2 higher than data

• “further work is needed to understand this process“

• Data
• Run 2 Pb-Pb collisions at 𝒔𝑵𝑵 = 𝟓. 𝟎𝟐 TeV

• Event selection
• Find two good reconstructed tracks
• With low pair-𝒑𝑻
• Back-to-back events (topological trigger)
• Decays into pions (~100%) particle identification via dE/dx 

using Time Projection Chamber (TPC)
• Veto on activity in the rest of the detector

ADC
ZDC

SPD

V0C

TPC

• ρ0(770) (𝑢ഥ𝑢−𝑑
ത𝑑

2
) measured at mid-rapidity by its decay to π+π−

• Coherence condition implies 𝑝𝑇 of ρ0 a few tens of MeV
• Nothing else in the detector (except possible few forward 

neutrons)

Kinematics of ρ0:
• From ρ0 rapidity one 

obtains 𝑊γPb
• From transverse 

momentum Δ2 = −𝑡

• Mass distribution described by the model: (Fig. 9.)
• 𝑑σ

𝑑𝑚ππ
= |𝐴 ∙ 𝐵𝑊 + 𝐵 + 𝐶 ∙ 𝑒𝑖ϕ ∙ 𝐵𝑊|2 + 𝑁 ∙ pol6

• Background from γγ → μμ fixed from MC
• Number of candidates obtain using integration of Breit-

Wigner (BW) part in range (2mπ;𝑀ρ + 5Γρ)
• ρ0 mass and width fixed to the PDG values

• Trigger related correction factors
• Main failure of vetos due to soft EM processes
• Estimated using unbiased trigger to compute the pile-up 

probability as a fuction of interaction rate

Fig. 5: Schematic model and pseudorapity of ALICE detectors used in analysis

• The acceptance and efficiency estimated using two different 
Monte Carlo generators (STARLIGHT and a flat MC) and GEANT 
simulation of ALICE

Fig. 7: Acceptance and efficiency estimated using STARLIGHT MC

Fig. 6: Topological trigger in SPD

Fig. 9: Invariant mass distribution of unlike-sign pion pairs with different fit 
contributions

Fig. 10: Differential cross section at mid-rapidity compared to models

Fig. 4: Excitation function for coherent and exclusive ρ0 production. The results 
from ALICE and STAR are compared with the STARLIGHT and GDL predictions for 
Pb–Pb and Au–Au. [1]

Fig. 3: The cross section for coherent photoproduction of ρ0 in ultra-peripheral 
collisions for the three models compared with the ALICE result. [1]

Fig. 2: Production diagram of a Rho0 meson in Pb-Pb
UPC

Fig. 1: Ultra-peripheral collision 

• Mid-rapidity cross section compared to models (Fig. 10)
• dσ/d𝑦 = (448 ± 2 stat −75

+38(syst)) [mb]
• Predictions by STARLIGHT [2], Gonçalves and Machado

using Color Dipole Model (CDM) [3,4] and Guzey, Kryshen, 
Zhalov (GKZ) [5] reported

• Result compatible with STARLIGHT model

Fig. 8: 𝑝𝑇 spectrum of analysed sample and various contributions to it 

• First and second diffractive peaks from ρ0 clearly visible in the 𝑝𝑇
spectrum (Fig. 8.)

• STARLIGHT MC models the 𝒑𝑻 distribution using nuclear form 
factor – some deviations observed

We estimate the cross section of 𝜌0 photoproduction at mid-rapidity at sNN = 5.02 TeV. The
measured cross section is compatible with STARLIGHT predictions within 1σ.

Models based on Color Dipole Model [3,4] and a VMD calculations [5] overestimate the data.

[1] Coherent ρ0 photoproduction in ultra-peripheral Pb–Pb collisions at sNN = 2.76 TeV, ALICE Collaboration. JHEP 1509 (2015) 095.
[2] STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions, Klein S. R., Nystrand J., et al. Comput.Phys.Commun. 212 (2017)
258-268.
[3] Photoproduction of ρ0 meson in ultraperipheral heavy ion collisions at the BNL RHIC and CERN LHC. V. P. Gonçalves and V. T. Machado, Phys. Rev. C 80, 054901
(2009).
[4] Light vector meson photoproduction in hadron-hadron and nucleus-nucleus collisions at energies available at the CERN Large Hadron Collider. G. Sampaio dos 
Santos and M. V. T. Machado. Phys. Rev. C 91, 025203 (2015)
[5] Coherent photoproduction of vector mesons in heavy ion ultraperipheral collisions: Update for run 2 at the CERN Large Hadron Collider. V. Guzey, E. Kryshen, M. 
Zhalov. Phys. Rev. C 93, 055206 (2016).

• UPC trigger
• V0 veto
• AD veto
• SPD topology (Fig. 6)

Motivation

What is UPC? Data Signal Extraction

Results

References Conclusions
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Nuclear shadowing effects t-dependence   
• Nuclear shadowing does not only suppress 𝛾A → ρA cross section, but also shifts its 
t-dependence towards smaller |t| by ~14%, Guzey, Strikman, Zhalov, PRC 95 (2017) 055208

• This trend does not seem to be supported by STAR result at √sNN=200 GeV, arXiv:
1702.07705

5
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FIG. 1: The dσγA→V A(Wγp)/dt cross section for ρ (top panel) and J/ψ (lower panel) for 208Pb normalized to its value at
t = tmin as a function of |t|. The cross section are calculated at Wγp = 62 GeV for ρ and Wγp = 124 GeV for J/ψ, corresponding
to the LHC Run 2

√
sNN = 5.02 TeV and y = 0. The resulting t dependence is compared to that given by the normalized

nuclear form factor squared |FA(t)/A|2. For ρ meson, we also show the result of the calculation at Wγp = 10 GeV corresponding
to the RHIC kinematics (the green dashed line labeled “RHIC”).

both coherent A′ = A and incoherent A′ ̸= A cases). The blue dot-dashed and black dotted curves give the coherent
[Eqs. (1) and (3)] and incoherent [Eqs. (4)] contributions, respectively; the red solid curve is the sum of the coherent
and incoherent terms. One can see from the figure that while the incoherent contribution partially fills in the first
diffractive minimum in the t dependence, the minimum still remains visible and its position as a function of |t| or pt
is unaffected.
The differential dσAA→J/ψA′A(y = 0)/dydt cross section for J/ψ photoproduction is shown in Fig. 3. The upper

panel corresponds to the calculations with the higher leading twist gluon shadowing (smaller σ3) [36] (as in Fig. 1):
The blue dot-dashed and black dotted curves give separately the coherent and incoherent contributions, while the red
solid curve is their sum. In the lower panel, we compare the sum of coherent and incoherent contributions calculated
using the higher (the red solid curve) and lower (the blue dot-dashed curve) gluon nuclear shadowing. One can see
from the lower panel of the figure that the higher gluon shadowing leads to a larger shift of the t distribution. Also,
as in the ρ meson case, the incoherent contribution partially fills in the first diffractive minimum, which still remains
visible.
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l Coherent photoproduction of vector mesons on nuclei in UPCs@LHC allows 
one to study nuclear shadowing in soft and hard processes at 
unprecedentedly high energies. 

l Photoproduction of ρ, ω, ɸ on nuclei tests the roles of hadronic fluctuations 
of the photon and inelastic nuclear shadowing. 

l Inelastic (Gribov) nuclear shadowing is essential in describing the data on 
photoproduction of ρ on nuclei at W > 10 GeV. 
   
l Preliminary ALICE Run 2 data on ρ photoproduction on nuclei shows 
unexpectedly large suppression → challenge for theory.   
  
l For up-to-date info on physics of UPCs, see talks at recent workshop: INT 
workshop “Probing QCD in Photon-Nucleus Interactions at RHIC and LHC: the Path to EIC”, Feb 13-17, 2017: http://
www.int.washington.edu/talks/WorkShops/int_17_65W/ 

Summary


