Recent results from Borexino

Alina Vishneva
(on behalf of the Borexino collaboration)
JINR, Russia

Baksan-50 session-conference, Nalchik, Russia
June 6-8, 2017
Outline

- Borexino experiment
- Neutrino program
- Antineutrino program
Outline

- Borexino experiment
- Neutrino program
- Antineutrino program
Borexino detector

- Location: LNGS, Italy
- Primary goal: low-threshold real-time solar neutrino detection (7Be)
- Detection principle: elastic scattering on electrons, IBD (for antineutrinos)

Properties
- Scintillator: Pseudocumene + PPO (target), Pseudocumene + DMP (buffer)
- Mass: 278 t
- PMTs: 2212 (initially) + 208 external
- Radioactivity: 238U and 232Th contamination
 $\sim 10^{-18}$ g/g
- Energy threshold: \sim100 keV (on e$^-$)
- Energy resolution@1 MeV: \sim5%

Phase 1: 2007 – 2010
Re-purification, calibrations: 2010-2011
Phase 2: 2011 – now

A. Vishneva (JINR) Baksan-50 June 6-8, 2017
The most important Phase-1 results

✔ Measurement of ^7Be neutrino flux with 5% precision

✔ Absence of day/night asymmetry for ^7Be neutrinos => MSW-LMA solution singled out

✔ First observation of pep neutrinos

✔ The strongest limit on CNO neutrino flux

✔ Observation of annual modulations of ^7Be neutrino interaction rate => proof of the solar origin of neutrinos

✔ Low-threshold detection of ^8B neutrinos

✔ Searches for rare processes (Pauli principle violation, heavy sterile neutrino in ^8B flux, antineutrinos of solar origin)
Outline

- Borexino experiment
- Neutrino program
- Antineutrino program
pp-neutrino flux measurement

Data set: January 2012 – May 2013 (408 days livetime)

Measured flux: \((6.6 \pm 0.7) \times 10^{10} \text{ cm}^{-2}\text{s}^{-1}\)

SAGE flux: \((6.0 \pm 0.8) \times 10^{10} \text{ cm}^{-2}\text{s}^{-1}\)

Standard Solar Model prediction: \(5.98 \times (1 \pm 0.006) \times 10^{10} \text{ cm}^{-2}\text{s}^{-1}\)

Systematic uncertainties:
- Energy estimator
- Fit range
- Fiducial volume cut
- Pile-up evaluation methods

A. Vishneva (JINR) Baksan-50 June 6-8, 2017
Electron lifetime limit

Decay mode: $e \rightarrow \gamma \nu$

Analysis approach based on the pp-neutrino analysis

Pp-neutrino rate is constrained according to results of radiochemical experiments

Systematic uncertainties:
- Quenching parameter
- Energy estimator
- Fiducial mass uncertainty

$\tau \geq 6.6 \times 10^{28} \text{ yr (90\% C.L.)}$

The strongest electron lifetime limit!

A. Vishneva (JINR) Baksan-50

June 6-8, 2017
Empirical mode decomposition

Seasonal modulations

All approaches show consistency with the solar origin of 7Be neutrinos.

The absence of seasonal modulation is ruled out at 99.99% C.L. (3.91σ).

Data set: Dec 2011 – Dec 2015 (1456 days livetime)

Fit to data (rate vs time)

Lomb-Scargle method

Astronomical observations:
- $T = 365.256 \, \text{d}$
- $\varepsilon = 0.0167$

Borexino result:
- $T = 367 \pm 10 \, \text{d}$
- $\varepsilon = 0.0174 \pm 0.0045$

A. Vishneva (JINR) Baksan-50 June 6-8, 2017
Outline

- Borexino experiment
- Neutrino program
- Antineutrino program
Geo-neutrino spectroscopy

Data set: Dec 15, 2007 – Mar 8, 2015 (2056 days livetime)

Geo-neutrino rate: $43.5^{+11.8}_{-10.4}$ (stat) $^{+2.7}_{-2.4}$ (sys) TNU

Geo-neutrino signal from mantle: $20.9^{+15.1}_{-10.3}$ TNU (98% C.L.)

See talk by O. Smirnov
Antineutrino signal correlated with gamma-ray bursts

Data set: Dec 2007 – Nov 2015 (Primary DAQ)
Dec 2009 – Nov 2015 (Flash ADC)

Inverse beta decay (electron antineutrinos)

(anti)neutrino-electron elastic scattering
Short-baseline sterile neutrino search: SOX project

- Source: $^{144}\text{Ce}-^{144}\text{Pr}$, 100-150 kCi
- 10000 events in 1.5 yr
- Duration of data taking: 1.5 yr
- Start at the beginning of 2018

Approaches:
- Disappearance search
- Oscillometry

See talk by M. Gromov
Future plans

- “Global” solar neutrino fit in a wide energy range (made possible due to the improved tuning of the energy scale and the detector’s response)
- More precise measurements of pp, 7Be, pep-neutrino fluxes, CNO limit (will be presented at TAUP-2017)
- New limit on the neutrino magnetic moment (at the level of GEMMA’s result)
- Search for non-standard neutrino interactions
- Sterile neutrino search (SOX)
- And more
Dear colleague

I am pleased to announce next workshop entitled "Recent Developments in Neutrino Physics and Astrophysics" that will be held in Assergi and L'Aquila (Italy) from September 4th to 7th, 2017.

The Borexino experiment—designed for world-class research in neutrino physics (especially, their oscillatory behavior), with particular emphasis on solar neutrinos and antineutrinos coming from Earth's interior (geo-neutrinos)—began its data-taking phase in May 2007.

2017 is therefore the 10th anniversary of Borexino's continuous data-taking: from September 4th to the 7th, physicists and astrophysicists will gather at LNGS and GSSI to discuss new perspectives on the many neutrino topics under active research.

The meeting is organized as a workshop, in order to allow wide discussions about all the diverse aspects of neutrino physics, the various neutrino sources and the approaches employed to probe them, as well as the models and approximations describing their behavior.

Please find enclosed poster of the event. You can find more detailed information on workshop webpage http://borexino10th.lngs.infn.it

Yours sincerely,

Gianpaolo Bellini
Chair of Local Organizing Committee