High-energy v astronomy Where do we stand, where do we go ?

010101110101010101010101010

Symposium 50 years BNO, June 8, 2016 Christian Spiering

1010110101011001

1010101010101010101

First ideas

1960

K. Greisen

F. Reines

M. Markov (with I. Zheleznykh)

... discuss ways to detect cosmic high-energy neutrinos deep underground or underwater.

Moisej Markov

Bruno Pontecorvo

M.Markov, **1960**:

"We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation" Proc. 1960 ICHEP, Rochester, p. 578.

The traditional method: v_{μ} charged current

μ

μ

Detection Modes

- Muon track from CC muon neutrino interactions
 - Angular resolution 0.1° 0.5°
 - Energy resolution from dE/dx: factor 2-3

- Cascade from CC electron and NC all flavor interactions
 - Angular resolution 2° 15°
 - Energy resolution ~ 15%

Detection Modes

- Muon track from CC muon neutrino interactions
 - Angular resolution 0.1° 0.5°
 - Energy resolution from dE/dx: factor 2-3

- Cascade from CC electron and NC all flavor interactions
 - Angular resolution 2° 15°
 - Energy resolution ~ 15%

THE DETECTORS

DUMAND

1973, International Cosmic Ray Conference (ICRC)

First discussions. F. Reines, J. Learned, H. Davis, P. Kotzer, M. Shapiro (all USA), G. Zatsepin (USSR) and S. Miyake (Japan)

1978

Design of a km³ detector close to Hawaii

The devices

The pioneer: NT200 in Lake Baikal

A textbook underwater neutrino event

ANTARES

IceCube Neutrino Observatory

PHYSICS GOALS

Physics with neutrino telescopes

Search for the sources of high-energy cosmic rays with neutrinos

- **Dark Matter and Exotic Physics**
 - WIMPs
 - Magnetic Monopoles and other superheavies
 - Violation of Lorentz invariance
- Neutrino and Particle Physics
 - Neutrino oscillation studies
 - Charm physics, cross sections at highest energies, ...

Supernova Collapse Physics

- MeV neutrinos in bursts → early SN phase, neutrino hierarchy, ...
- Cosmic Ray Physics
 - Spectrum, composition and anisotropies

ATMOSPHERIC NEUTRINOS

[6000ns, 9952ns]

Run 113641 🗗vent 33553254

IceCube: Spectrum of atmospheric neutrinos

IceCube: Spectrum of atmospheric neutrinos

- Consistent and competitive with accelerator-based measurement
- Different energy range and baseline than for accelerator studies!

IceCube: search for sterile neutrinos (E > 1 TeV)

THE DISCOVERY OF A DIFFUSE COSMIC NEUTRINO FLUX

Special search for neutrinos with $E_v > 500 \text{ TeV}$

IC79/IC86

2.8 σ

Follow-up Analysis: HESE (High Energy Starting Event)

First evidence for an extra-terrestrial h.e. neutrino flux

Follow-up Analysis: HESE (High Energy Starting Event)

First evidence for an extra-terrestrial h.e. neutrino flux

Through-going muons, six years (2009-15)

Through-going muons, six years (2009-15)

Spectrum $\Phi_{\nu+\overline{\nu}} = (0.90^{+0.30}_{-0.27}) \cdot (E_{\nu}/100 \,\text{TeV})^{-(2.13\pm0.13)}$

Broken Spectrum?

 $\Phi = \Phi_0 \times E_v^{\gamma}$

Flavor composition: what do we expect?

Flavor composition: what do we measure?

 $\nu_{\rm e}: \nu_{\mu}: \nu_{\tau} \text{ at source}$ 200:1:0 1:2:0 18 0.1. 1:0:0 0.83 16 14 0.67 95 % u_{μ} ν_{τ} 68 % 120.50 10 8 0.33 68 % 0.83 95 % 6 0.17 1.00 00:0 4 0.00 2 0.50 8 27.0 0.05 eg.) eg. 0 $\nu_{\rm e}$

the best fit flavor composition disfavors 1:0:0 at source at 3.6 σ

SEARCH FOR POINT SOURCES

A reminescence:

The first combined skymap Amanda + Baikal NT200, ~ 15 years ago

IceCube 7 years

pre-trial significance skymap

Limits vs. Models for selected sources

Crab Nebula

Limits vs. Models for selected sources

Blazars (Petropolou et al. 2015)

Also no source in HESE skyplot (4 years)

Transient sources: example GRB

Steadily improving limits from Baikal, AMANDA, ANTARES, IceCube

Latest IceCube result (2017):

 10^{-7} Ahlers et al. **1172 GRB** Waxman-Bahcall sr^{-1} **Neutron escape models** s^{-1} à la Ahlers ruled out. 10^{-8} 2 Waxman Bahcall model E almost ruled out. $\varepsilon_b^2 \Phi_0(\varepsilon_b) \; (\text{GeV})$ 10^{-9} \mathcal{E}_{h} 10^{-10} $Energy \rightarrow$ 10^{5} 10^{6} 10^{4} 10^{7} Neutrino break energy ε_b (GeV)

Summary of where we stand:

Cosmic high-energy v discovered

- New window opened, but landscape not yet charted: no point sources identified up to now
- Remaining uncertainties on spectrum and flavor composition
- Excluded GRB, Blazars, as sole source of HESE events
- But: some individual sources seem to be in reach

Don't forget: fascinating results on oscillation physics!

We need detectors ...

- ... with different systematics

- ... with better angular resolution
- In North and South
- Iarger area

Baikal, Mediterranean Sea, South Pole

GIGATON VOLUME RETECTOR

BAKAL GYR

~ 60 authors

6 Russian, 1 Czech, 1 Slovakian and 1 Polish institution (lead Institutions: INR Moscow and JINR Dubna)

After 5 years of prototype tests:

"Dubna" Demonstration cluster April 2015

.

Old NT200: volume ~ 0.0001 km³

GVD cluster: 0.006 km³ (Antares 0.015 km³)

> Full scale cluster April 2016

•• •. ÷ ۰ ٠ ÷, ۰. •. •• **

Old NT200: volume ~ 0.0001 km³

GVD cluster: 0.006 km³ (Antares 0.015 km³)

2 GVD Clusters 0.012 – 0.04 km³ Second cluster April 2017 Both clusters taking data

A clear muon neutrino candidate

(Dubna cluster)

Single string. Upward moving μ

ime

An interesting cascade event

 $E = 158 \text{ TeV}, \ \theta = 59^{\circ}, \rho = 73 \text{ m}$ (radius of *Dubna* cluster = 40 m)

Cumulative number of clusters vs. year

Year	2016	2017	2018	2019	2020
Nb. of clusters	1	2	4	6	8
Nb. of OMs	288	576	1152	1728	2304

Effective volume GVD-1 for cascades ~ 0.4 km³

~ 400 authors

50 institutions in 15 countries (lead Countries: Italy, France, The Netherlands)

Original idea: 6 blocks at 3 locations: 6 x 0.6 km³

KM3NeT Phase 1: Prototype

- 7 strings, small spacing
- Feasibility test for ORCA

24 strings, 124 m spacing

- Demonstrate principle
- Physics on the 3-4 times Antares scale

(2021)

ORCA: determination of the Neutrino Mass Hierarchy (NMH)ARCA: IceCube physics, but with better angular resolution and from the Northern hemisphere

KM3NeT Phase 2: ORCA

Expected sensitivities vs. time

ORCA: determination of the Neutrino Mass Hierarchy (NMH)

Time schedules have to be taken with a grain of salt!

NMH sensitivity of ORCA/PINGU depends on the octant of θ_{23} (lower values for 1st octant), that of JUNO on energy resolution (lower values for 3.5%, upper for 3%), that for DUNE on the δ_{CP} value.

Compilation by p.Coyle, based on the original one of Blennow et al.

KM3NeT Phase 2: ARCA

from the Northern hemisphere

ICECUBE GEN2

~ 400 scientists

~50 institutions in 12 countries (lead Institutions U. Wisconsin, DESY)

IceCube Gen2

- **PINGU**: GeV scale, v mass hierarchy
- High Energy Array: PeV scale , ν astronomy
- Surface array: Veto array for HEA , cosmic ray physics
- Radio Array: > 100 PeV, BZ (GZK) neutrinos

Gen2: Example for point source sensitivity

Global timeline

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Summary of where we go

<u>≥ 2020:</u>

Baikal GVD-1 and KM3NeT-ARCA will scrutinize IceCube results on diffuse fluxes with different systematics.

IceCube with more statistics, and GVD-1, ARCA will measure the v flux from the Galactic plane and very likely identify individual sources.

End of the 2020s:

Hope to have 5-7 km³ in the North (GVD-2 and full ARCA) and 7-10 km³ in the South (IceCube Gen2)

Start full v astronomy (individual sources, spectra)

And don't forget: particle physics (oscillation physics, ...) !

THANK YOU FOR YOUR ATTENTION

Galactic Plane emission (from CR interactions with dust)

Rejection of atmospheric μ and ν by "selfveto"

Rejection of atmospheric μ and ν by "selfveto"

Atmospheric neutrino self-veto

Atmospheric neutrino self-veto

Atmospheric neutrino self-veto

The zenith distributions of high-energy astrophysical and atmospheric neutrinos are fundamentally different.

Schönert, Gaisser, Resconi, Schulz, Phys. Rev. D, 79:043009 (2009) Gaisser, Jero, Karle, van Santen, Phys. Rev. D, 90:023009 (2014)

Model-independent proof of astrophysical origin:

IceCube 7 years

Sensitivities and upper limits

KM3NeT Phase 2: point source sensitivity

For specific flux assumptions for Supernova Remnants (modeled using γ-ray results) Kelner et al., Phys.Rev. D74 (2006) 034018

\rightarrow 3 σ detection in ~5 years

Gen2/HEA

String Length 1.3 km

Contribution of Fermi-2Lac Blazars to the diffuse TeV-PeV flux

ApJ vol. 835, no. 1, p. 45 (2017)

- Search for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue (862 blazars)
- Data from 2009-2012
- No significant excess
- Contribution of 2LAC blazars to IceCube's astrophysical
 v flux ≤ 27% (0.01- 2 PeV), for equipartition of flavors at Earth and spectral index 2.5.
- < 50% for spectral index 2.2</p>

Constrains recent models for neutrino emission by blazars

REMAINING SOURCE CANDIDATES TO EXPLAIN THE HESE FLUX

Resolving the sources of the diffuse flux

Resolving the sources of the diffuse flux

IceCube Gen2: Top View

