

Highlights of non-SUSY searches for physics beyond the SM from the CMS Detector at the LHC

Sergei Shmatov Joint Institute for Nuclear Research, Dubna for CMS Collaboration

The Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences June 6 – 8, 2017, Nalchik, KBR Russia

Outline: Non-SUSY Physics BSM (Exotica)

- Higgs beyond SM (extra Higgs, non-standard decays)
- Extended gauge models
- Extra dimensions (incl. microscopic black holes)
- Dark Matter (WIMPs)
- Leptoquarks
- Beyond 3rd Generation
- Compositeness, GUT-inspired scenario etc

CMS Higgs Public Physics Results

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/

CMS Exotica Public Physics Results

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/

CMS Beyond-two-generations (B2G) Public Physics Results

http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G/

up to a few TeV

CMS Performance and Data

Detector Active Fraction

Large general-purpose particle physics detector

A General Search View!

Rates (exclusive classes) as expected for 19.7 fb⁻¹ for CMS →muons, electrons, photons, MET

Model independent searchDivide events into exclusive classesStudy deviations from SM predictions in a statistical way

Distributions in each class

- $\sum p_T$ Most general
- $M_{inv}^{(T)}$ Good for resonances
- MET Escaping particles

Landscape of Signals

- Heavy Resonances and Non-Resonant Signals المجرب المحالية Heavy Resonances and Non-Resonant Signals technicolor)
 - \Rightarrow dileptons, dijets, diphotons, ttbar, VV, HH
- Non-Resonant Signals (extra dimensions, compositeness)
 - \Rightarrow dileptons, dijets, diphotons
- Mono-particle + Missing ET (extended gauge) models, extra dimensions, technicolor) \Rightarrow mono-jet + MET, mono-photon + MET, mono-lepton + MET

leptoquarks, 4th Generation) \Rightarrow all particles, leptons + jet(s) Sergei Shmatov, Highlights of non-SUSY searches for physics beyond the SM from the CMS Detector at the LHC, 2017, Nalchik

ICHEP 2016 Exotica Summary (95% C.L.)

Properties of Higgs Boson: Legacy of Run1

No significant signal non-SM Higgs: any additional Higgs will indicate new physics

1

Sergei Shmatov, Highlights of non-SUSY searches for physics beyond the SM from the CMS Detector at the LHC, 2017, Nalchik

0.5

0.5

0 0

 $H \rightarrow \tau \tau$ tagged

 $H \rightarrow bb tagged$ $\mu = 0.84 \pm 0.44$

 $\mu = 0.91 \pm 0.28$

0.5

1

1.5

Best fit σ/σ_{SM}

0

 (M, ε) fit

- 68% CL

Particle mass (GeV)

95% CL

100

10⁻³

 10^{-4}

0.1

Н→bБ

KV

1.5

8

Non-Standard Higgs Decays

9

LFV Decays: H ${\rightarrow}\mu \tau,$ et

	Observed(Expected) limits (%)		Best fit branching fraction (%)		
	M_{col} -fit	BDT-fit	M_{col} -fit	BDT-fit	
$H \rightarrow \mu \tau$	<0.51 (0.49) %	<0.25 (0.25)%	$0.02\pm0.20\%$	0.00 ± 0.12 %	
$H \to e\tau$	<0.72 (0.56) %	<0.61 (0.37) %	0.23 ± 0.24 %	0.30 ± 0.18 %	

The 2016 data does NOT show an excess!

Higgs Invisible Decays

Heavy Resonances

New Physics $(Z'/Z_{KK}/G_{KK})$ contributions to SM processes:

- □ TeV⁻¹ model of flat EDs: KK excit. of SM gauge bosons $Z_{KK} \rightarrow 2I$, 2jets
- □ Randall-Sundrum model of AdS₅ EDs: Kaluza-Klein graviton excitations
- $\square \quad \text{Technicolor: } \rho T \rightarrow WZ$

<u>Signals:</u> di-leptons/di-jets/di-photons resonance states in high (~TeV) invariant mass range \Rightarrow new particles would be observed as a bump, excess in the mass spectrum

Excellent momentum and energy resolutions are required !!

750 GeV Excess in Diphotons?

between 0.01 and 0.2.

Search for high mass Zy Resonances

EXO-17-005 In the wake of the (mild) 750 GeV diphoton excess in 2015... -> A search in the Z_{γ} channel

Combining leptonics and hadronic Z decay channels

No sign of a new resonance – especially not at 750 GeV 🙂

X->HH -> 2b2bbar

Higgs bosons are highly boosted and is reconstructed as one hadronic jet

M [GeV]

16

Dileptons: Z' and RS1 Limits

1500

2000

2500

Dileptons: Extra Gauge Bosons

JHEP 04 (2015) 025

Select events with dijets with mass > 1.25 TeV or with mass > 500 GeV

Dijets

CMS-PAS-EXO-16-056

No signal observed/Testing many models

	Observed (expected) mass limit [TeV]				
Model	Final	$36\mathrm{fb}^{-1}$	$12.9 {\rm fb}^{-1}$	$2.4\mathrm{fb}^{-1}$	$20{ m fb}^{-1}$
	State	13 TeV	13 TeV	13 TeV	8 TeV
String	qg	7.7 (7.7)	7.4 (7.4)	7.0 (6.9)	5.0 (4.9)
Scalar diquark	qq	7.2 (7.4)	6.9 (6.8)	6.0 (6.1)	4.7 (4.4)
Axigluon/coloron	$q\overline{q}$	6.1 (6.0)	5.5 (5.6)	5.1 (5.1)	3.7 (3.9)
Excited quark	qg	6.0 (5.8)	5.4 (5.4)	5.0 (4.8)	3.5 (3.7)
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.4 (3.6)	3.0 (3.3)	_	
W′	$q\overline{q}$	3.3 (3.6)	2.7 (3.1)	2.6 (2.3)	2.2 (2.2)
Ζ′	$q\overline{q}$	2.7 (2.9)	2.1 (2.3)	—	1.7 (1.8)
RS Graviton ($k/M_{\rm PL} = 0.1$)	$q\overline{q}$, gg	1.7 (2.1)	1.9 (1.8)	_	1.6 (1.3)
DM Mediator ($m_{\rm DM} = 1 \text{ GeV}$)	$q\overline{q}$	2.6 (2.5)	2.0 (2.0)	_	_

ttbar resonances

19

Dibosons: WW, WZ, ZZ, WH, and ZH

The benchmark models considered are a heavy vector triplet (HVT) model and the Gbulk graviton in the Randall–Sundrum (RS) WED model: HV and Gbulk decaying into pairs of boosted bosons arXiv:1705.09171

95% confidence level lower limits in the HVT on the masses of W' and Z' singlets at 2.3 TeV, and on a heavy vector triplet at 2.4 TeV

	HVT A/B				RS	bulk	
Mass	V	W′		Ζ′		G _{bulk}	
[TeV]	WZ	WH	WW	ZH	WW	ZZ	
0.6	4170/—	3215/—	2097/—	1789/—	406.8	203.4	
0.8	1258/680	1074/878	635/354	576/485	76.1	38.0	
1.0	492/464	443/501	247/229	231/264	20.5	10.2	
1.5	81.7/105	77.8/108	39.8/51.1	38.6/53.6	1.80	0.901	
2.0	19.8/27.9	19.2/28.3	9.32/13.1	9.16/13.5	0.240	0.120	
2.5	5.70/8.37	5.60/8.44	2.61/3.84	2.58/3.90	0.0449	0.0224	
3.0	1.79/2.68	1.77/2.70	0.808/1.21	0.801/1.23	0.00982	0.00491	
3.5	0.584/0.888	0.579/0.891	0.264/0.402	0.262/0.405	0.00420	0.00210	
4.0	0.192/0.296	0.191/0.296	0.0887/0.136	0.0883/0.137	0.00244	0.00122	

Non-Resonant Signals

□ ADD-graviton contribution in the SM processes (Drell-Yan, diphotons productions) Hidden brane set

"Mirror" Forces

excess in di-particle spectrum

arXiv:1703.09986

Nonresonant Dijets: Cl and ED

$\chi_{\text{dijet}} = (1 + |\cos \theta^*|) / (1 - |\cos \theta^*|)$

	2.7 fb ⁻¹ (13 TeV)			
dijet	$n_{\rm H} = 6 \text{ ADD} = 7.5 \text{ TeV}$	Model	Observed lower limit (TeV)	Expected lower limit (TeV)
0.0 qq qqijet/qX	$\frac{2}{1} \text{CMS} \qquad \qquad \frac{1}{2} 1$	$\Lambda^+_{\rm LL/RR}$ (NLO)	11.5	12.1±1.2
	$5 = \text{NLO QCD+EW} \cdots \Lambda_T (\text{GRW}) = 10 \text{ TeV}$	$\Lambda_{\rm LL/RR}^{-}$ (NLO)	14.7	17.3 ± 3.4
		Λ_{VV}^+ (NLO)	13.3	$13.9{\pm}1.2$
- 0	M _{II} > 4.8 TeV	Λ_{VV}^{-} (NLO)	18.6	$22.2{\pm}5.4$
ల్ 0.0		Λ^{+}_{AA} (NLO)	13.3	$13.9{\pm}1.2$
- o.		$\Lambda_{AA}^{(n)}$ (NLO)	18.6	22.1±5.1
		$\Lambda^{++}_{(V-A)}$ (NLO)	8.4	$9.5{\pm}1.6$
0.0 0.	5	$\Lambda^{(V-A)}_{(V-A)}$ (NLO)	8.4	9.5±1.7
		$ADD \Lambda_T (GRW)$	9.4	9.8±1.2
0.0	$1 - 3.0 < M_{\odot} < 3.6 \text{ TeV}$	ADD $M_{\rm S}$ (HLZ) $n_{\rm ED}=2$	10.1	$10.6{\pm}1.3$
		ADD $M_{\rm S}$ (HLZ) $n_{\rm ED} = 3$	11.2	$11.7{\pm}1.4$
0.0		ADD $M_{\rm S}$ (HLZ) $n_{\rm ED} = 4$	9.4	$9.8{\pm}1.2$
-		ADD $M_{\rm S}$ (HLZ) $n_{\rm ED} = 5$	8.5	$8.9{\pm}1.1$
0.05 0.1		ADD $M_{\rm S}$ (HLZ) $n_{\rm ED} = 6$	7.9	$8.2{\pm}1.0$
	1.9 < M _{ij} < 2.4 TeV	$n_{\rm ED} = 6 \text{ ADD QBH } M_{\rm QBH}$	7.8	7.7±0.3
0.0	5	$n_{\rm ED} = 1 \text{ RS QBH } M_{\rm QBH}$	5.3	$5.3 {\pm} 0.4$
	χ _{dijet}			

The 95% confidence level lower limits for the contact interaction scale Λ are in the range 8.4-18.6 TeV.

Excluded are quantum black holes with masses up to 7.8 TeV in the ADD model for n = 6, and up to 5.3 TeV in the Randall-Sundrum model for n = 1.

The lower limits for the scales of ADD models, ΛT (GRW) and *M*S (HLZ), are in the range 7.9-11.2 TeV, and are the most stringent set of limits available.

Compositeness: excited leptons

CMS-PAS-EXO-16-009

3.0 (3.0)

15(15) TeV

μμγ

Mono-Particle + MET

- Extra gauge bosons (W') predicted by extended gauge models (left-right symmetric models and GUT-inspired models)
- Kaluza-Klein graviton emission in large flat extra-dimensions (ADD model)
- Dark Matter
- Technicolor

<u>Signals:</u> lepton + MET, photon + MET, jet + MET

DM Production at LHC

Dark Matter: Summary of ICHEP2016

10-1

10-2

2500

YY

bb

mz [GeV]

2500

CMS

29

DM: Exclusion Limits on DM-N scattering

CMS Preliminary LHCP 2017 10⁻³⁵ σ^{SI} _{DM-nucleon} [cm²] 10⁻³⁶ 10⁻³⁷ 10⁻³⁸ 10-39 10⁻⁴⁰ 10-41 10⁻⁴² 10⁻⁴³ 10-44 -45 10 10^{-46} 10-47 Dark matter mass m_{DM} [GeV] 10 1 CMS observed exclusion 90% CL DD observed exclusion 90% CL Vector med., Dirac DM; $g_a = 0.25$, $g_{DM} = 1.0$ CRESST-II Boosted dijet (35.9 fb⁻¹) [arXiv:1509.01515] [EXO-17-001] CDMSlite Dijet (35.9 fb⁻¹) [arXiv:1509.02448] IEXO-16-0561 PandaX-II DM + j/V gg (35.9 fb⁻¹) [arXiv:1607.07400]

LUX

[arXiv:1608.07648]

[EXO-16-048]

[EXO-16-039] DM + Z_{II} (35.9 fb⁻¹) [EXO-16-052]

DM + y (12.9 fb⁻¹)

JHEP 02 (2017) 135

Leptons + MET: W'/TeV-1/DM/Split-UED

PRD 91 (2015) 092005 The lower mass limit in sUED: 1.74 TeV for $\mu = 0.05$ TeV 3.71 TeV for $\mu = 10$ TeV μ is bulk mass parameter of sUED R is radius of ED

$$M_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\ell, \vec{p}_{\rm T}^{\rm miss})])},$$

The lower bound on compactification scale Mc of TeV⁻¹ is 3.4 TeV

Multiparticle Events

Black Holes

Leptoquarks

• etc

<u>Signals:</u> jets + leptons + photons + MET

arXiv:1705.01403

Microscopic Black Holes

M_D (TeV)

Semiclassical black holes and string balls with masses as high as 9.5 TeV, and quantum black holes with masses as high as 9.0 TeV are excluded, thus significantly extending limits set at a center-of-mass energy of 8 TeV with the LHC Run 1 data.

CMS-PAS-EXO-16-043

 $S_{\rm T}$ is the sum of the magnitudes of the $p_{\rm T}$ of the two leading electrons and two leading jets.

A 95% C.L. lower limit is set on the mass of a second-generation scalar leptoquark at 1130 (920) GeV for $\beta = 1$ (0.5)

Beyond 3rd Generation: Vector-like Quarks

Extra generation of fermions

CMS

- SM group extension (+2/3, -1/3) is strongly limited by EW tests and Higgs itself

- vector-like fermions (+2/3, -1/3, +5/3, -4/3): SU(2)_LxSU(2)_R symmetry (V-structure of charged currents)

CMS B2G Summary (95% C.L.)

*model-independent

Many More Searches...

Seesaw type III EXO-17-006

Mono-top EXO-16-017

Stopped Long Lived Particles: EXO-16-004

Di-jets / data scouting EXO-14-005

Attobarn BSM Physics

Energy

LHC is the machine for discoveries

Luminosity

dijet resonances $\rightarrow \times 100 \text{ (M}=4-5 \text{ TeV)}$

we will be in an unexplored region on day 1 !

$Z' \rightarrow x I 3$ (M= 3 TeV)

we will be in an unexplored region with 1-2 fb⁻¹ !

Sergei Shmatov, Highlights of non-SUSY searches for physics beyond the SM from the CMS Detector at the LHC, 2017, Nalchik

40

... some expectations

Projected performance of selected BSM searches with an upgraded CMS detector at the LHC and HL-LHC:

 expected limits for masses of new particle will be increased up to 2-3 times

> High Luminosity allows to separate spin hypothesis of new states if it will be discovered: spin-1 Z' and spin-2 graviton separation significances reach 5σ for 3000 fb⁻¹ only

Conclusions

- CMS performed a wide program for search of particles and phenomena
- Run1 data (2010-2012) demonstrate triumph of Standard Model (many Exotica and SUSY Model were tested and new limits are derived)
- □ Run2 at 13 TeV was started in 3rd June 2015
 - \checkmark no significant signal of new physics was found so far
 - ✓ previous excesses have not been confirmed

Now LHC re-started

- ✓ expected ~ 90 fb-1 in 2017-2018
- ✓ in total around 130 fb-1 in Run2
- ✓ Run1 searches is being fully repeated
- new final states and new analysis techniques

Collisions recorded by the CMS detector on 23 May 2017 at the start of the year's physics run

Thank you for your attention

Dibosons: EGM/Technicolor

PLB 740 (2015) 83

DM: Exclusion Limits on spin-1 med.

LHCP 2017

CDMSlite [arXiv:1509.02448]

PandaX-II

LUX

[arXiv:1607.07400]

[arXiv:1608.07648]

CMS Preliminary

10⁻³⁷

10-38

Dileptons: Mass Spectrum

$M(\mu+\mu-) = 1871 \text{ GeV}$ and Track pT > 3 GeV

PLB 768 (2017) 57

Heavy Resonances

6000

- Extra gauge bosons predicted by extended gauge models (left-right symmetric models and GUT-inspired models)
- Kaluza-Klein graviton excitations arising in extra dimensions models with curved bulk space (Randall-Sundrum model)
 - Small extra spatial dimensions, Curved

bulk space (AdS $_5$ - slice)

Well separated graviton mass spectrum

□ Kaluza-Klein excitations of SM gauge

bosons in large flat extra-dimensions (TeV-1 Models)

- Bosons could also propagate in the bulk
- Fermions are localized at the same (opposite) orbifold point: destructive (constructive) interference between SM gauge bosons and KK excitations
- Technicolor

<u>Signals:</u> di-leptons/di-jets/di-photons resonance states in high (~TeV) invariant mass range \Rightarrow new particles would be observed as a bump, excess in the mass spectrum

Excellent momentum and energy resolutions are required !!

ADD Limits PRL 108 (2012) 111801

2.2 fb⁻¹ at 7 TeV

CMS

10³

M_{vv} [GeV]

Observed

Diphoton

JHEP 04 (2015) 025

Sergei Shmatov, New Physics with the CMS Experiment @ LHC, The Actual Problems of Microworld Physics, 2015, Gomel

Summary of Leptons + MET

CMS

49

		Las	t update - December 2013
2009		LHC startup, √s 900 GeV	
2010			
2011		$\sqrt{s}=7+8$ TeV, <i>L</i> ~6x10 ³³ cm ⁻² s ⁻¹ , bunch spacing 50ns	Run 1
2012			~25 fb⁻¹
2013	1.01	Co to design operate nominal luminosity Phase 0	
2014	LST	Go to design energy, nominal luminosity - Phase 0	
2015			
2016		$\sqrt{s}=13\sim14$ TeV, $l\sim1x10^{34}$ cm ⁻² s ⁻¹ , bunch spacing 25 ns	Rup 2
2017		vo-ro in rov, 2 intro oni o , bunon opaoing zono	
2018			~75-100 fb ⁻¹
2019	LS2	Injector + LHC Phase I upgrade to ultimate design luminosity	
2020			
2021		$\sqrt{s}=14$ TeV, $L\sim 2x10^{34}$ cm ⁻² s ⁻¹ , bunch spacing 25ns	Run 3
2022			~350 fb⁻¹
2023			
2024	LS3	HL-LHC Phase II upgrade: Interaction Region, crab cavities?	
2025			<u></u>
 2035?		$\sqrt{s}=14$ TeV, $L\sim5x10^{34}$ cm ⁻² s ⁻¹ , luminosity levelling	~3000 fb ^{.1}