

Silicon Tracking Systems for BM@N and MPD experiments at NICA

Dementev Dmitrii For JINR STS team & CBM Collaboration JINR LHEP

STS for BM@N experiment

STS Setup

At the maximum design luminosity, the event rate in the BM@N interaction region is about **10 MHz** with 1%X target; the total charged particle multiplicity exceeds 500 in the most central Au+Au collisions at E = 4,65 GeV/n.

As the average momentum of the particles produced in a collision at Nuclotron energies is below 1.5 GeV/c, the detector design requires a **low material budget.**

Material budget per station ~1% X_0

Maximum occupancy less than 8%

In 2015 MoU of CBM STS participation in BM@N experiment at Nuclotron (4 STS CBM-like stations by 2020) as a "Phase 0" CBM STS experiment

Sensors

6.2 x 4.2 cm² 6.2 x 6.2 cm² Hamamatsu

Quality assurance of the sensors

- Final product inspection at the vendors: detailed data
- Quality inspection at JINR has been advanced:

full inspection during prototyping, sample tests during series production

- sophisticated optical and electrical methods established
- charge collection tests before/after irradiation, S/N determination

400 sensors are already ordered and arrived at JINR

By E. Lavrik (Universität Tübingen)

STSXYTER ASIC

produced in 9/2016

- 128 channels+ 2 test channels
- Self triggered architecture
- Maximum data rate: 250 kHz/channel
- 5-bit amplitude measurement
 - shaper_{slow}+ ADC
- time stamp measurement
 - shaper_{fast} + discriminator
- Dynamic range: 16 fQ
- Noise performance: 1000 enc at 30 pF input
- Time stamp resolution: 1 ns

Test socket for the ASIC-tab-bonds

FEB board with 1 STSXYTER ASIC

Test bench for characterization of the ASIC

FEB board with 8 ASICs (3D-view, V.Kleipa)

Dementev Dmitrii, International Session-Conference of SNP PSD RAS "Physics of Fundamental Interactions"

5

Modules

Wirebonder F&K Delvotec G5

TabBonder Planar EM-437

Mockups of the STS modules

Operation time for 1 module mock-up ~ 3 - 3,5 person/day

About 420 components are in assembly process at different stages

Microcables from Al-polyimide

varies from 74 to 82 μ m

Module assembly site at JINR LHEP

The main room (90m²) is class 7 ISO (less than 10 000 p/ft³ < 0.5 mkm)

4 technicians are currently involved in module assembling

Ladder assembly

Design by S. Igolkin (CERN)

Material: CF prepreg M55J/ 334EU Modulus of composite 32800Gpa

Total weight: 10,4 g/m

40 CF frames were already produced (this is already enough for BM@N, production for the CBM@FAIR is under discussion)

Mockup of the ladder

Ladder assembly device

The precision of the sensor orientation:						
X coordinate	coordinate ±50 mkm					
Y coordinate	±15 mkm on 1200 mm base					
	±12 mkm on 180 mm base					
Z coordinate	±50 mkm					

DAQ scheme

Proposed by Dr. C.J. Schmidt and Dr. D. Emschermann (GSI)

Test beam at Nuclot

Beam properties:

> Deuteron beam with Ekin = 2.95 GeV/n > Intensity: $2 * 10^5$ p/s

 Al cable 22 sm

Dementev Dmitrii, International Session-Conference of SNP PSD RAS "Physics of Fundamental Interactions"

Channel

Test beam at COSY

COSY Dec 2014

Test bench setup: 2 hodoscopes + 4 STS stations + GEM set-up + electronics tests

2,4 GeV proton beam

Anna Senger, 26th CBM Collaboration Meeting

ITS for MPD Experiment

Stage 2: 2022-2023

Installation of ITS and thin wall Be beam pipe

JINR appeals for the Know-How transfer to build 6-layer ITS of the ALICE ITS Upgrade type with increased length of ladders to fit the NICA/MPD Interaction diamond parameters MoU is on agreement

New ALICE ITS layout

By Yu. Murin (JINR)

12

ITS for MPD Experiment

Reconstructed Λ -hyperon invariant mass spectrum ($p_t < 0.6 \text{ Gev}$) A. Zinchenko et al

Identification of open charm particles

MPD ITS based on ALICE type staves

Example of 10 D0-decays in 5 pixel layers ITS

ALPIDE – Monolithic Active Pixel Sensor

CMOS Pixel Sensor using TowerJazz 0.18 μm CMOS Imaging Process

Monolithic PIXEL chip using Tower Jazz CMOS 0.18 μm

- Chip size: 15mm x 30mm
- Pixel pitch ~ 30 μm
- Spatial resolution ~ 5 μ m
- Power density < 100 mW/cm²

Automated Module Assembly (custom-made machine)

Automated machine for module assembly

Our group already ordered one machine

By L. Musa (CERN)

Conclusion

- Mutual interest by CBM groups from Germany and Russia to install, commission and use 4 CBM-like Silicon Tracking Stations in BM@N in 2020
- Our group is already close for production readiness for BM@N STS. Production will start at the end of 2018.
- We initiated contacts with ALICE ITS Upgrade team to build 6layers ITS ALICE type based on a ALPIDE sensors.

First mini work meeting with the head of ALICE ITS team L. Musa was held at JINR 13-15 Apr 2017

Workshop at JINR dedicated to the BM@N and CBM STS setups. 22-23 May 2017

16

THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

JINR STS Department

- The head of the department is Yu. Murin
- Quality assurance of sensors: N. Zamyatin (LHEP)+ M. Merkin (SINP)
- Silicon Tracking Systems (STS+ITS)
 - Assembly of modules and super-modules: A.
 Sheremetev +4
 - Mechanics of Composite Materials: A. Voronin, Igolkin as a consultant (CERN)
 - Bench and in-beam testing group: D. Dementev + 2 students
- Administration, civil construction and procurements support: V. Penkin + S. Udovenko
- Industry partners: Ird. LTU (Kharkov), Planar enterprise (Minsk)

CBM STS Cad model

Sandwich concept:

- Lightweight and stiff
- Parameters depend on filler material
- Versatile configuration

Further development requires:

- Thermal testing
- Requirement summary
- Coordination with industrial manufacturers

Further CAD development:

- Finalize cabling concept
- Schematic cable routing
- Integrated design

By J. HEUSER

Physics motivation for a study of charm production at NICA

Heavy charm quarks are produced at the very initial stage of the collision of the heavy ions to witness the CBM(NICA,FAIR) or QGP (RHIC,CERN) . C-quarks rescattering by CBM is the right way to study CBM at NICA

C-quarks interaction with cold nuclear matter has an exciting perspective at NICA since the estimated yields for the production of the hypothetical light supernuclei $_{c}$ He³ and $_{c}$ He⁴ indicated feasibility of the experimental search at NICA and not anywhere else at the moment

From the experimental point of view production of open-charm particles in the energy range of NICA is a complete *terra incognita*

Expected yields of the C-probes

 $D_{s}^{-} \rightarrow K^{+} K^{-} \pi^{-}$ $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$ $\overline{\Lambda}_{c}^{-} \rightarrow \overline{p} K^{-} \pi^{+}$

Open-charm resonances $D^{*0} \rightarrow D^+ \pi$ $\overline{D}^{*0} \rightarrow D^- \pi^+$ $D^{*+} \rightarrow D^0 \pi^+$

 $D^{*-} \rightarrow \overline{D}{}^0 \pi^-$

At the highest energies NICA luminosity will reach values of $L=10^{27}$ cm²s⁻¹ and the gold-gold collision rate of 5 kHz with the estimates for the number of registered open-charm particles in a two-week run of NICA/MPD as follows

K-

	Decay	Multiplicity	c τ, μ	BR,%	Eff,%	Number of events
	D ⁰ ->Κ ⁺ π-	0,1	123	4	2	48 10 ³
1	Dbar ⁰ ->K ⁻ π+	0,1	123	4	2	48 10 ³
	D+->Κ+ π-π+	0,1	312	7	1,5	63,5 10 ³
	D ⁻ ->Κ ⁻ π-π+	0,1	312	7	1,5	63,5 10 ³
	D ⁺ _s -> K ⁺ K ⁻ π+	0,1	150	3	1,5	27,2 10 ³
	Λ ⁺ _c -> pK ⁺ π-	10-3	60	6	0,1	363
	Λbar⁺ _c -> pbarK⁻ π+	10-3	60	6	0,1	363
	_c He³-> d+pK+ π-	10-4	60?	?	?	3,6 (?)
	_c He ⁴ -> t+pK ⁺ π-	10 ⁻⁵	60?	?	?	0,36 (?)