Alikhanov Institute for Theoretical and Experimental Physics Russian Federation State scientific center

Neutrinos from supernova: status and prospects

A.V. Yudin, ITEP

International Session-Conference of the Section of Nuclear Physics of the Physical Sciences Department of the Russian Academy of Sciences "Physics of fundamental interactions" dedicated to 50th anniversary of Baksan Neutrino Observatory June 6-8, 2017

Hertzsprung-Russell diagram

$$L = 4\pi R_s^2 \times \sigma_{SB} T_{eff}^4$$

 $M > 85M_{\odot}$ $O \to Of \to LBV \to WN \to WC \to SN$

 $85M_{\odot} > M > 40M_{\odot}$ $O \to Of \to WN \to WC \to SN$

 $40M_{\odot} > M > 25M_{\odot}$ $O \rightarrow RSG \rightarrow WN \rightarrow WC \rightarrow SN$

 $25M_{\odot} > M > 20M_{\odot}$ $O \to RSG \to WN \to SN$

 $20M_{\odot} > M > 10M_{\odot}$ $O \to RSG \to BSG \to SN$

Image: Wiki, credits ESO https://www.eso.org/public/images/eso0728c/

Adapted from D.G. Yakovlev, "Nuclear burning in superdense matter", Pushino (2010)

SN1604 Kepler's SN

Supernova 1994D in Galaxy NGC 4526

The Disappearance of the Red Supergiant Progenitor of Supernova 2008bk

Seppo Mattila,^{1,2*} Stephen Smartt,³ Justyn Maund,^{4,5} Stefano Benetti,⁶ Mattias Ergon¹

Type IIP SN 2008bk

Properties of supernovae and their classification

Overwhelming majority of information on SNe comes from observations of their spectra:

fluxes, colors, doppler shift and width of spectral lines

Adapted from: F. Röpke (http://theor.jinr.ru/~ntaa/07/files/program.html)

Light curves of supernovae

Adapted from: F. Röpke (http://theor.jinr.ru/~ntaa/07/files/program.html) A. Filippenko (Annu. Rev. Astron. Astrophys. 1997, **35**, 309)

Explosion Mechanisms of Core-Collapse Supernovae

Massive star before collapse

Onion-like structure of the star

Figure 5.6: Composition versus current mass m for a 15 M_{\odot} presupernova star just before its iron core collapse shown as the mass fractions X of various nuclear species. The curve labeled by "Fe" includes all nuclides of mass numbers $48 \leq A \leq 65$ having a neutron excess greater than ⁵⁶Fe (such as ⁴⁸Ti, ⁵¹V, ⁵²Cr, ^{57,58}Fe, ⁵⁹Co, ⁶²Ni, ⁶³Cu, and several other species). Note a scale break at $4.5 M_{\odot}$. Adapted from [32]

From Woosley & Weaver An.Rev. Astron. Astrophys. v. 24, p. 205 (1986)

The properties of the Neutrino flux

Cumulative neutrino "light" curve (based on Nadyozhin 1978)

Liebendoerfer et al. ApJS 150, 1 (2004)

Solid lines: 40 M_{Sun} progenetor

Dashed: 13 M_{Sun} progenetor

Neutrino spectra for thermal phase

High-energy cutoff

(relevant to V_e, \tilde{V}_e):

$$\mathcal{E}_{\nu}^{3} \exp\left[-\alpha \left(\frac{\mathcal{E}_{\nu}}{kT_{\nu ph}}\right)^{2}\right]$$
$$S_{\nu} \sim \frac{1 + \exp\left(\frac{\mathcal{E}_{\nu}}{kT_{\nu ph}}\right)}{1 + \exp\left(\frac{\mathcal{E}_{\nu}}{kT_{\nu ph}}\right)}$$

, $(\alpha \approx 0.02 - 0.04)$.

Schematic Supernova «light curves»

Core-collapse SNe (all other Types but Ia)

The SN outburst is triggered by the gravitational collapse of the "iron" core of a mass $M_{Fe}=(1.2-2) M_{\odot}$ into a neutron star. About (10–15)% $M_{Fe}c^2$ is radiated in the form of neutrinos and antineutrinos of all the flavors (e, μ , τ):

$$E_{V\tilde{V}} = (3-5) \times 10^{53} erg$$

The explosion energy (kinetic energy of the envelope expansion):

$$E_{exp} = (0.5-2) \times 10^{51} erg$$

it comes from the shock wave created at the boundary between a new-born neutron star and the envelope to be expelled.

$$E_{exp}/E_{V\tilde{V}} \sim 3 \times 10^{-3}$$

Rich nucleosynthesis — from neutrino-induced creation of light element in C-O and He shells through synthesis of heavy nuclides by neutron capture at the bottom of expelled envelope

The mechanism of the core-collapse SNe is still under detailed study

Spherically-symmetrical collapse.

An empirical theorem: Spherically-symmetrical models do not result in expulsion of an envelope; the SN outburst does not occur: the envelope falls back on the collapsed core. Corollary: One has to address to 2- and, perhaps, 3-dimensional models to convert the stalled accreting shock into an outgoing blast wave.

Multi-dimensional collapse.
 Large-scale neutrino-driven convection
 A. Burrows' group (Arisona); E. Müller, T. Janka (MPA, Garching)

- Interaction between rotation and magnetic field
 G.S. Bisnovatyi-Kogan's group (ICR, Keldysh IPM, Moscow)
- Massive fast-rotating collapsed core followed by rotational fission resulting in formation of a close neutron-star binary that evolves being driven by the emission of gravitational waves and mass-exchange and ends with the explosion of a low-mass neutron star (M≈0.1M_☉). V.S. Imshennik (Alikhanov ITEP, Moscow)

First collapse + Rotational fission → Neutron-star binary evolution energetic v_e; LSD signal 4.7 hour
 → Low-mass neutron star explosion + second collapse vv of all flavours; IMB, Kamioka, Baksan signals; SN otburst
 VS. BEREZINSKY et al, Nuovo Cimento, v. 11, p. 287, (1988).

Neutrino-convective mechanism of supernova explosion

From: Janka H.-T. et al.

«Core-collapse supernovae: Reflections and directions»

Progress of Theoretical and Experimental Physics, Volume 2012, Issue 1

The Puzzle of SN1987A

The star that exploded on February 23 in the Large Magellanic Cloud (the progenitor of supernova 1987A) has now been identified. It was catalogued by in 1969 as an OB star of 12th magnitude and given the designation **Sanduleak-69 202**. Observations at the European Southern Observatory in the mid-1970's allowed to classify it as of spectral type B3 I, that is a very hot, supergiant star. **Credit:** ESO

1987A progenitor

		Feb	rary 23,	1987		
1	3	5	7	9	11	
Opt	ical obse	rvations		UT		
	$m_{\rm v} = 12^{\prime}$	n		п	$n_{\rm v}=6^m$	
Geograv	2:52:3	5,4				
LSD 5	2:52:3	6,8 3,8	2	7:36:00 19		
KII 2 (4)	2:52:3	34 14	12	7:35:35 47		
IMB			8	7:35:41 47		
BUST 1	2:52:	34	6	7:36:06 21		
	-		•			
ν̃e	$+ p \rightarrow$	$n + e^+$,				
E_{c}	$_{\mathrm{e}^+}=E_{ ilde{\mathrm{v}}}$	- 1,3 M	[эВ,		N/	
n	$+ p \rightarrow$	$d + \gamma (2,$	2 MэB)			146
	ozhalzo		176 N		6	~
O G R v	azhska	va. UFN	176. N	610 200	6	

$$v_e + (A, Z) \to e^- + (A, Z + 1),$$

 $v_e + (A, Z) \to v'_e + (A, Z)^*,$

Rotational breakup neutron star explosion scenario Imshennik, *Sov. Astron. Lett.* 18, 194 (1992)

The rotational energy of the collapsing core E_{rot} reaches the limit of stability with respect to fragmentation: $E_{rot}/|E_g| > 0.27$ (E_{rot} is the core gravitational energy) The binary components begin to approach each other due to the loss of total angular momentum and kinetic energy of orbital motion through the radiation of gravitational waves. Less massive component fills its Roche lobe. There begins a rapid mass transfer from the component M_2 to the component M_1 . Low-mass NS explodes when its mass decreases to the minimum possible mass of a NS.

Exotic mechanisms:

Quark and hybrid stars

Composition of a Neutron Star

Maxwellian-type phase transition causes a density jump inside the star

Signals of the QCD Phase Transition in Core-Collapse Supernovae

I. Sagert,¹ T. Fischer,³ M. Hempel,¹ G. Pagliara,² J. Schaffner-Bielich,² A. Mezzacappa,⁴ F.-K. Thielemann,³ and M. Liebendörfer³

Shock wave propagation inside a collapsing stellar core

Maximum neutron star mass

J.M. Lattimer

Annual Review of Nuclear and Particle Science, vol. 62, issue 1, pp. 485-515 (2012)

Neutrino signal:

Star death alert

Table 5.1: Major nuclear burning stages for $15 M_{\odot}$ and $25 M_{\odot}$ stars (Adapted from [33])*									
Burning Stage	<i>Т</i> _с (К)	$ ho_c \ ({ m g/cm^3})$	$L_{\nu\tilde{ u}}$ (erg/s)	L (erg/s)	T _{eff} (K)	$egin{array}{c} R_{ m ph} \ (R_{ m \odot}) \end{array}$	Time Scale		
Hydrogen	3.4(7)	5.9(0)	5.3 (36)	8.1(37)	3.26(4)	4.6(0)	$1.2(7){ m y}$		
Helium	1.6(8)	1.3(3)	3.9 (33)	2.3(38)	1.59(4)	$3.2\left(1 ight)$	$1.3(6){ m y}$		
Carbon	6.2(8)	1.7(5)	3.4(38)	3.3(38)	4.26(3)	5.3(2)	$6.3(3){ m y}$		
Neon	1.3(9)	1.6(7)	6.7(41)	3.7(38)	4.28(3)	5.6(2)	$7.0(0){ m y}$		
Oxygen	1.9(9)	9.7(6)	7.9(42)	3.7(38)	4.28(3)	5.6(2)	$1.7(0){ m y}$		
Silicon	$3.1\left(9 ight)$	2.3(8)	3.4(44)	3.7(38)	4.28(3)	5.6(2)	$6.0(0){ m d}$		
Collapse	8.3(9)	6.0(9)	6.8(48)	3.7(38)	4.28(3)	5.6(2)	0.30 s		

*Notation: $3.4(7) \equiv 3.4 \cdot 10^7$ etc.

Weaver, Zimmerman, Woosley ApJ v. 225, p. 1021 (1978)

From: A. Odrzywolek

During Si-burning phase 1 neutron/day/kiloton of water 1kpc distance

Kutschera, Odrzywolek, Misiaszek. Acta Phys. Pol. B, 40, 11 (2009)

Kutschera, Odrzywolek, Misiaszek. Acta Phys. Pol. B, 40, 11 (2009)

Kutschera, Odrzywolek, Misiaszek. Acta Phys. Pol. B, 40, 11 (2009)

Thank you!

Betelgeuse

Image by ESO/P. Kervella - http://www.eso.org/public/images/eso0927b/