Results and prospects of underground physics research in Japan

M.Nakahata Kamioka Observatory ICRR/IPMU, Univ. of Tokyo

<u>Congratulations for the 50th Anniversary of</u> <u>Baksan Neutrino Observatory</u>

Photos taken during Baksan School 2001

<u>30th Anniversary of SN1987A</u>

Kamiokande, IMB and Baksan detectors observed neutrinos from a supernova SN1987A at Large Magellanic Cloud on Feb.23rd, 1987.

Contents

- What experiments are at Kamioka now
- Brief history of reserches at Kamioka
- Recent highlights from Kamioka
- Future

Kamioka underground (NOW)

Kamioka underground experiments (NOW)

Brief history of Kamioka underground

Brief history of Kamioka underground

Recent Highlights from Kamioka (SK, T2K, KamLAND)

SK atmospheric v: v_τ appearance

SK atmospheric v analysis (with T2K constraint)

Using all SK data(SK-I/II/III/IV). Totally 0.33 Mton yr exposure.

- SK+T2K (θ_{13} fixed): $\Delta \chi^2 = \chi^2_{NH} \chi^2_{IH} = -5.2$ (-3.8 (-3.1) expected for SK best(combined) oscillation parameters)
- With toy MC studies,
 P(Δχ2 < -5.2) for IH is 2.4%, while that for NH is 43.3% (for sin²θ₂₃=0.6)

SK solar v: day/night effect

<u>IIECI</u>	$A_{DN} = \frac{1}{(Day + Night)/2}$	
	D/N asymmetry (A _{DN})	
	Δm^{2}_{21} =4.84x10 ⁻⁵ eV ²	
SK-I	$-2.0\pm1.8\pm1.0\%$	
SK-II	$-4.4 \pm 3.8 \pm 1.0\%$	
SK-III	$-4.2\pm2.7\pm0.7\%$	
SK-IV	$-3.6 \pm 1.6 \pm 0.6\%$	
combined	$-3.3 \pm 1.0 \pm 0.5\%$	4499 days
non-zero significance	3.0σ	
	Direct indication of matter effect.	

(Day - Night)

Solar global analysis

SK solar v: spectrum

Results from T2K

- v_e appearance for the study of θ_{13} and δCP
- v_{μ} disappearance for the study of θ_{23} & Δm^{2}_{23}

Until May 2016 15 x 10²⁰ POT (~20% of the planned total) Neutrino mode 7.57x10²⁰ POT Anti-Neutrino mode 7.53x10²⁰ POT (POT: Proton On Target)

<u>T2K: v_{μ} disappearance and v_{e} appearance data</u>

<u>T2K: results from $v_{\mu} + \overline{v}_{\mu}$ disappearance</u>

 ν_{μ} 7.57x10^{20} POT, $\overline{\nu}_{\mu}$ 7.53x10^{20} POT data

Oscillation parameters of $sin^2\theta_{23}$ and Δm^2_{32} compared with others

T2K has given the most precise measurement. T2K favors maximal mixing $(\sin^2\theta_{23}=0.5)$ but NOvA disfavors. Need more data to conclude.

The best fit points lie near the maximally CP violating value δ_{CP} =-0.5 π . The CP conserving values (δ_{CP} =0 and δ_{CP} = π) lying outside of the T2K 90% confidence level interval.

KamLAND-Zen World best 0vßß experiment at present

<u>KamLAND-Zen result on <m_{BB} ></u>

How to measure CP phase δ

Long baseline accelerator: v_e appearance

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}(\frac{1.27\Delta m^{2}_{31}L(km)}{E_{\nu}(GeV)}) \quad \text{Leading term}$$
Sub-leading
$$= \frac{+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}}{CPV}$$

$$= \frac{-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}}{CPV} \quad \text{CPV}$$

$$= \frac{-8C_{13}^{2}C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Delta_{21}}{-8C_{13}^{2}S_{13}^{2}S_{23}^{2}\frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2})\cos\Delta_{32}\sin\Delta_{31}} \quad \text{matter}}$$

$$= \frac{-8C_{13}^{2}S_{13}^{2}S_{23}^{2}\frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2})\sin^{2}\Delta_{31}}{\delta_{ij}} \quad \text{matter}}$$

$$= \frac{-8C_{13}^{2}S_{13}^{2}S_{23}^{2}\frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2})\sin^{2}\Delta_{31}}{\delta_{ij}} \quad \text{matter}}$$

Compare $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ for CP phase measurement

<u> $\nu_{\mu} \rightarrow \nu_{e}$ probability (L=295km)</u>

Normal hierarchy

• Comparison between $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

As large as ~25% from nominal

It is sensitive also to exotic (non-PMNS) CP violation cases.

Neutrino oscillation vs. anti-neutrino oscillation

Hyper-K

DAD

2012 ZENRIN

Super-K

Evidence and precise measurement by Hyper-Kamiokande

High intensity neutrino beam produced at J-PARC

Hint of CP violation by T2K

Super-K

~0.6GeV_vµ 295km long baselin

Hyper-Kamiokande

74m

Upgrade of Super-K in terms of detector size and photon sensitivity.

Total Volume

•260kton x 2 (SK: 50kton)

Fiducial Volume

•190kton x 2 (SK: 22.5kton)

•Single p.e. efficiency

•24%@400nm (SK 12%)

•ΔT 1nsec (SK 2.3 nsec)

Budget request for the 1st detector is on-going.

60m

Towards leptonic CP asymmetry

Strategy of Japan-based program $\sim 3\sigma$ indication with T2K \rightarrow T2K-II, $> 5\sigma$ discovery and measurement with HK

A Multi-purpose Experiment

Comprehensive study of v oscillation

- CPV
- Mass hierarchy with beam+atmosph. v
- θ_{23} octant
- Test of exotic scenarios

Nucleon decay discovery potential

- All visible modes including $p \rightarrow e^+ \pi^0$ and $p \rightarrow \overline{\nu}K^+$ can be advanced beyond SK.
- Reaching 10³⁵ yrs sensitivity

Unique Astrophysics

- Precision measurement of solar v
- High statistics Supernova v with pointing capability and energy info.
- Supernova relic v (non-burst v̄) observation is also possible

Earth core's chemical composition Etc.

SK-Gd project

Identify $\overline{v_e} p$ events by neutron tagging with Gadolinium.

Gadolinium has large neutron capture cross section and emit 8MeV gamma cascade. 0.1% Gd gives с С

UO

 $\Delta T \sim 30 \mu s$ Vertices within 50cm

SK-Gd schedule plan

- Open the tank in 2018 and fix water leak
- \succ Load 10 tons of $Gd_2(SO_4)_3$, i.e. 0.01% Gd, in 2019 for the first step.
- Plan to increase to 0.1% Gd after analyzing 0.01% Gd data for one or a few years.

Physics with SK-Gd

Future of KamLAND-Zen

 Immediate next step is the750 kg enriched ¹³⁶Xe run called KamLAND-Zen 800.

More future plan

Higher energy resolution for reducing 2v BG \implies KamLAND2-Zen

Winston cone light collection ×1.8

high q.e. PMT light collection $\times 1.9$ 17" $\phi \rightarrow 20$ " $\phi \epsilon = 22 \rightarrow 30 + \%$

New LAB LS light collection ×1.4 (better transparency)

Expected $\sigma(2.6 \text{MeV}) = 4\% \rightarrow \sim 2\%$

Target sensitivity of $m_{\beta\beta}$ of 20 meV

1000+ kg xenon

Conclusions

- More than 30 years have passed since we started experiments at Kamioka.
- Neutrino oscillations have been established in the last 30 years and Japanese projects have been contributed for them.
- There are still many important unknowns in neutrino physics.
- Japanese future projects will continue to investigate nature of neutrinos and to proceed neutrino astronomy.