

Cosmic Rays from 10¹⁶ - 10²¹ eV

John Matthews

University of Utah

High Energy Astrophysics Institute Department of Physics and Astronomy

BNO-50

Photo: Ben Stokes, U of Utah

8 June 2017

Kabardino-Balkarian State University, Nalchik, Russia

Cosmic Ray Flux

- Extends over a wide energy range
- Almost featureless
 - Slope ~(-3)
 - Slight "knee" at 3x10¹⁵ eV
- Flux is ~isotropic due to galactic magnetic fields.
- Direct Measurements ~E<10¹⁵ eV
- Above this indirect measurements

Cosmic Rays at highest energies in 2003

Source, acceleration, and mass of the particles unknown – but they exist ! Exists the cut-off? (strong extragalactic processes which happens very close are necessary) large particle detector arrays (AGASA - no cutoff) **Measurements by** fluorescence telescopes (HiRes cutoff (observed 11 or events while expecting 30, if no cut-off $7x10^{-5}$ probability) 10^{2} 10^3 10^{5} 10¹⁹ Scaled flux $E^{2.5} J(E)$ (m⁻² sec⁻¹ sr⁻¹ eV^{1.5}) Equivalent c.m. energy Vsnn (GeV) 10¹ 10 10¹ 10¹⁵ Spectrum before Auger 10¹ Cutoff ves or no 10¹³ 10¹² 10²⁰ 10¹³ 10¹⁵ 10^{17} 10¹⁸ 10¹⁴ 10¹⁶ 10¹⁹ 10²¹ (eV/particle) Energy

J.N. Matthews

Baksan Neutrino Observatory BNO-50

Telescope Array

700 km^{2:} Lat. 39.30°N, Long. 112.91°W 1550m ASL
 The High Energy component of Telescope Array – 38 fluorescence
 telescopes (9728 PMTs) at 3 telescope stations overlooking an array of 507
 scintillator surface detectors (SD) - complete and operational as of ~1/2008.
 8 June 2017 J.N. Matthews Baksan Neutrino Observatory BNO-50

Telescope Array: Operational 3/2008

Typical Fluorescence Event

Monocular timing fit (time vs angle) ws

Scintillator Surface Detectors

2 layers scintillator 1.25 cm thick, 3m² area Optical fibers to PMTs Baksan Neutrino Observatory BNO-50

Scintillator Detectors on a 1.2 km square grid

- Power: Solar/Battery
- Readout: Radio
- Self-calibrated:
 μ background
- Operational: 3/2008

TA shower analysis with SD

Example Event

Pierre Auger Observatory: completed 7/2008

PIERRE

Andreas Haungs for the **1** J.N. Watthewser Collaboration Baksan Neutrino Observat**6**ry BNO-50

Energy Scale Check and Resolution

Energy Spectrum

TA SD Spectrum (7 yrs data)

Previously Pubilshed: 4 year TA surface detector spectrum Astrophysical Journal Letters: \$768.121 (2013) bservatory BNO-50

Comparison of TA and Auger (+8.5%) Spectra

TA Low Energy Extension (TALE) Galactic to Extra-Galactic Transition

All 10 Telescopes installed and in operation since fall 2013

Test array of 16 scintillation surface detectors in operation

TALE SD infill array recently funded from Japan – deploy to field 2016-17

8 June 2017

J.N. Matthews

2013/03/29

Baks

Nearby Events with Cerenkov

Comparison with other Measurements

TALE/NICHE Low Energy

NICHE (15) Cerenkov detector array under installation between TALE array and northern Telescope Station

8 June 2017

J.N. Matthews

UHECR Composition

- Use hybrid or stereo to constrain geometry and know X_{max}
- Stereo also provides a redundant measurement of X_{max}

High Energy Hybrid Event

Stereo Observation

Xmax Technique

- Shower longitudinal development depends on primary particle type.
- FD observes shower development directly.
- Xmax is the most efficient parameter for determining primary particle type.

Baksan Neutrino Observatory BNO-50

Hybrid Observation

- Astropart. Phys. 64 49 (2014).
 4 yrs, 297 Events > 10^{18.4} eV
- Cuts based on pattern recognition technique to improve resolutions $s \le 25 \text{ g/cm}^2$, all energies.
- Update:
 - 7 yr, 613 Events > 10^{18.4} eV

Hybrid X_{max} Measurement

Xmax Data comparison to QGSjet II-03 proton and iron models

8 June 2017

J.N. Matthews

MD Hybrid

"Shift Plot"

Plot ΔX_{max} required to maximize data/MC agreement (QGSJETII-03).

Standard statistical test on shifted distribution (points) Pink, blue bands for other hadronic models

J.N. Math6eg/cm² systematic uncertaintyservatory BNO-50

TA data compared to QGSJet-II.3

Astrophysically p and He are very different

Interaction lengths of p,He,O and Fe

J.N. Matthews

Auger Composition: mean depth and rms of shower maximum

Composition is getting heavier with energy Method only applicable up to 50EeV due to statistics

Photon/Neutrino Searches

• See Presentation by G. Rubtsov, INR

Anisotropy

Published Hotspot (5yr data)

7 Year Excess Map

Global Excess Chance Probability: 3.7×10⁴⁴tth 3.46 (~ same as first 5 years) Observatory BNO-50

The Future:

$TA \times 4$ Project

Quadruple TA SD (~3000 km²)

500 scintillator SDs

2.08 km spacing

Approved in Japan 2015

3 yrs construction, first 100 SDs have arrived in Utah (2016-05)

2 FD stations (12 HiRes Telescopes) Funding approved US summer 2016

Get 19 TA-equiv years of SD data by 2020

Get 16.3 (current) TA years of hybrid data

Clarify the details of the Hotspot Simulated 19 TA-equiv yrs data

Hotspot Signal 80-18.9=61events (RA, Dec)=(145",45") Gaussian cr=10*

Isotropic B.G. 305-61=244events

Oversampling

20° radius circle

Single Source

Two Separated Sources

Photo: Max Malacari, U of Chicago

Auger Prime Upgrade

8 June 2017

J.N. Matthews

EUSO / POEMMA

- JEM EUSO
- KLEPVE EUSO (MSU)
- EUSO Balloon (CNES; Canada, Aug 2014, 5 hr)
- EUSO SPB (CSOM; Apr-May, 2017)
- Mini EUSO (MSU, RusCosmos; Fall, 2017?)

EUSO-TA

2013: Installation, building, lenses2014: for Auger/FAST tests2015:

- Detector installation
- •FOV +/- 8°
- •Initial CLF and CSOM laser observations
- Cosmic ray observations UHECRs detected
- Internal trigger tests on the balloon PDM board
- 2016: Tests in conjunction with EUSO-SPB1

Photon Detection Module

48x48=2304 pixels Single Photoelectron Counting 2.5 μS time bins 1 "video clip" = 128 bins = 320 μS ~15 watts

8 June 2017

J.N. Matthews

Baksan Neutrino Observatory BNO-50

EUSO – SPB1

Lat: -29.3808 Lon: -106.5004 Alt 2602 Speed: 8.61

Heading 295.00

EUSO-SPB Specs	
SPB Float Height	110,000 ft = 33.5 km
Weight	
Detector	2250 lbs
Payload	2700 lbs w/ SIP, Antennas, Empty Ballast Hoppers
Dimensions	1.2m x 1.2m x 3m
Power consumption	40 W Day, 70 W Night (assumes 20W PDM heater @ 50%)
Telescope	Refractor with 2 Fresnel lenses
FOV	11. deg (measured w/ stars)
Camera:	2,304 pixels; 36 MAPMTS (Hamamatsu R11265-113-M64-MOD2)
Data volume:	Downlinked ~1-1.5 Gb/day
Recorded	~3 GB/Day w/ 10 hour dark run
	with trigger rate of 0.2 Hz
Energy threshold	for h=33 km ~3 EeV
Ground equivalent Trigger Aperture	
	250 km^2sr @ 3 EeV to ~500 km^2 sr @ 10 EeV

8 June 2017

1 of 2 J.N. Matthews

Conclusions 1

- UHECR Flux suppression verified by Telescope Array and Pierre Auger
- Telescope Array consistent with GZK cutoff, Auger spectrum cuts off a bit lower energy
- Telescope Array energy range being expanded below 10¹⁶ eV with TALE – Spectral shape looks consistent with Yakutsk Cerenkov, Tunka-133, Kascade-Grande, and Ice Top – Normalization in progress
- Telescope Array observes four spectral features over >5 orders of magnitude in energy with one crosscalibrated set of detectors

Conclusions 2

- $10^{17} 10^{18} \text{ eV}$ composition goes heavy to light
- >10^{19.3}
 - Telescope Array light (protonic) composition
 - Auger composition getting significantly heavier
- E > 5.7x10¹⁹ Telescope Array observes indications (3.4σ) of medium scale anisotropy
- TAx4 -> expansion to ~ aperture of Auger
- Auger Prime add Scintillators
- EUSO broad program moving forward

Summary

- TA has measured the energy spectrum, composition and arrival direction of UHE cosmic rays
- The spectrum and composition of UHE cosmic rays measured by TA remain compatible with a single light component at above the ankle (~6×10¹⁸ eV).
- We have reported a hot spot seen in the direction of Ursa Major with 3.4 σ significance
- **New:** TA Low Energy Extension (TALE) is coming on line. TALE surface detector array was funded by the Univ . of Utah and was recently been funded by Gov't of Japan.
- TA and TALE have measured energy spectrum between 6×10¹⁵ eV to over 10²⁰ eV with a single cross-calibrated set of detectors and have observed spectral features
- Much more data are needed! coming soon TAx4

Galactic to Extra-Galactic Transition

- Previous suspected structure
- Unknown energy scale
 - Tie down the energy scale and simultaneously measure spectrum and composition

Fitting the UHE Spectrum with TA

Fitting parameters:

Power law at the source, E^{-P}

Evolution of the sources, (1+z)^m

Test Correlations with AGNs

- 472 AGN from 2006 Veron catalog with z < 0.018
- E > 57 EeV, zenith angle < 45°, N = 42 (5 yr)
- Separation angle = 3.1°

Correlations with AGNs

Probability of event overlapping with AGN is $p_o = 0.24$ Find 17 events correlate of 42 $\Rightarrow p = 0.014$

