Study of physics of strong interaction at low energies in experimenta at e+e collider VEPP-2000

(Some hadronic cross sections measurements with the CMD-3 detector)

Fedotovich G.V.

On behalf of CMD-3 collaboration Budker Institute of Nuclear Physics Novosibirsk State University

> 6-8 June, Nalchik, BNA-50

Outline

- Collider and detector
- > Experiment
- > Short recent results
- > Summary and perspectives

Motivation

Experimental input is needed! The major contribution to (g-2)/2 coming from VEPP-2000 energy range gives 92% and determines its uncertainty ³

VEPP-2000 collider, in operation since 2010

E=1.8 GeV, $L \approx 2-3 \times 10^{31} \text{ cm}^{-2} \text{ sec}^{-1}$

2017 data taking

About 40 pb-1 collected

2.007 GeV ($e^+e^- \rightarrow D^{0*}$)	4 1/pb	
$p\bar{p}$ and $n\bar{n}$ threshold 14 1/pb		
Overall:		
1.65 – 2.007 GeV	41.5 1/pb	

In 2011-2013, the luminosity was limited by a deficit of positrons (from E > 650 MeV) and limited energy of the booster (from E > 825 MeV).

In 2017: big improvement in luminosity at high energy, still way to go

Energy measurement

Starting from 2012, energy is monitored continuously using Compton backscattering techniques

Laser Radiation coming from A and C points Lenses Mirrors near angle θ = 0 is undergone interference Infrared radiation 3M HPGe detector Orad laser e beam Compton Ø backscattered $\phi = 0$ ohotons 3F1 R 3D2 R R \$13500 Stunoo θ θ 3000 θ_{int} 2500 2000 1500 1000 500 E = 993.662 ± 0.016 MeV 1650 1700 1750 1800 1850 1900 1950 . keV

E.V. Abakumova et al., Nucl. Instrum. Meth. A744 (2014) 35-40

CMD-3 detector

DC – 1218 hexagonal cells with sensitive wires, W-Re alloy, 15 (in diameter, spatial resolution < 100 (.)

Z-chamber – start FLT, precise determine z-coordinate ~ 500 (detector acceptance)

LXe calorimeter thickness $5,1X_0$, 196 towers & 1286 strips. Spatial resolution 1 - 2 mm, measurement of conversion point for g's measurement of shower profile

TOF - 16 counters, time resolution ~ 1ns particle id (mainly p, n)

Calorimeter with CsI crystals (<3,5 t), 8 octants, number of crystals - 1152, 8 X₀.

MR system – 8 octants (cosmic veto, ~ 1ns)

Design magnetic field - 1,5 T (current value 1.3 T)

Luminosity determination (e+e- & $\gamma\gamma$)

e, μ , π separation based on momentum in DC

e, μ , π separation based on energy deposition in calorimeter red dots – simulated muons

$e^+e^- \rightarrow \pi^+\pi^-$

Study of the process $e^+e^- \rightarrow K^+K^-$

The measured cross section of the process $e+e- \rightarrow K^+K^-$ together with the results from BaBar is shown near φ -meson mass energy. The systematic error is about 2.5%

This process is studied using decay $K_s \rightarrow \pi^+ \pi^-$

In $E_{cm} = 1004 - 1060$ MeV: 25 energy points. Collected luminosity ~5.9 pb⁻¹ Systematic error is 2 – 3 % Published in Phys.Lett. B760 (2016) 314-319 The difference of charged and neutral cross-sections normalized to phase space difference as well as Coulomb interaction of charged kaons in final state.

13

 $e^+e^- \rightarrow K_1 K_5$

This process is studied using decay $K_s \rightarrow \pi^+ \pi^-$

Good agreement with all previous results In $E_{cm} = 1100 - 2000$ MeV: 54 energy points Accumulated luminosity about 32.1 pb⁻¹ 1889 events with fully reconstructed $K_s \rightarrow \pi^+\pi^-$

- Analysis is based on the integrated luminosity34 pb⁻¹
- ➢ It is consistent with BaBar but more precise
- Number of selected signal events was found to be 940 ± 57.
- ► The main physical background comes from the processes: $e+e- \rightarrow K^+K^-\pi^0\pi^0$, $\pi^+\pi^-\pi^0$
- Two intermediate states are clearly seen: φπ° and K*(892)K mechanism
- Detection efficiency according to SIM was around 12% ~ 18% with energy
- The current systematic uncertainty we estimated as 10%

- CMD-3 studies uses 22 pb⁻¹ between 1.5 and 2 GeV, more than 20000 events with 3 and 4 tracks were selected for analysis;
- > Ionisation losses in DC dE/dx provide good K/ π separation;
- Analysis of $\pi^+\pi^-$, $K^{\pm}\pi^{\mp}$, K^+K^- inv. Masses clear shows signals from π^0 , $K^{*0}(892)$ and $\phi(1020)$;
- → Many different mechanisms seen: $K_1(1270)K \rightarrow K2\pi K$, $K^*(892)K\pi$,

 $K_1(1400)K \to K^*(892)\pi K, \ \phi \pi^+ \pi^-.$

Recently published in Phys.Lett. B756 (2016)153-160

 $e^+e^- \rightarrow \phi \eta \rightarrow K^+K^-\eta$ 500 Experiment event red – experiment 200 MC: signal+background MC: K⁺K`eta 180 400 blue - sim + bkgNumber of MC: phi(1020)f_a(500)->K⁺K^{*}pi⁰pi 160 MC: K^{*+}K⁺pi⁰->K⁺K^{*}pi⁰pi⁰ 140 300 MC: K⁺K pi⁺pí 120 MC: phi(1020)pi^o 100 200 MC: K⁺Kⁱpi⁰ 80 MC: K*K omega 60 MC: p†pípípípípí°pi⁰ 100 40 20 600 500 700 0 Missing mass of K⁺K, MeV/c² 1000 1005 1010 1015 1020 1025 1030 1035 $M_{inv}(K^{+},K^{-}), MeV$ A data sample of 22 pb⁻¹ collected in g З. 2011-2012 is used to energy points

between 1.57 - 2.0 GeV Analysis: dominant φη signal, studies

- of nonresonance K⁺K⁻η is needed
- Background with numerous physical components is seen
- The data sample includes 1268 ± 43 signal events

$e^+e^- \rightarrow K^+K^-\omega$

- A data sample of 12 pb⁻¹ collected in 2011-2012 is used to study e⁺e⁻→ K⁺K⁻ω;
- Selected number of signal events
 899 ± 37
- XS was measured at 16 energy points
 between 1.84 2.0 GeV
- Analysis emphasizes the dominant
 K⁺K⁻ω signal, studies of the hadronic continuum K⁺K⁻ω is needed

Summary and nearest perspectives

- ► VEPP-2000 successfully operated at $\sqrt{s} = 2m_{\pi} 2 \text{ GeV}$ with $L_{max} = 2x10^{31} \text{ cm}^{-2}\text{s}^{-1}$ and collected about 60 pb⁻¹ per detector (2011 – 2013).
- Cross sections measured have the same or better statistical precision with respect to previous CMD-2 experiments.
- > CMD-3 results will provide high accuracy, compatible or better than ISR measurements, the tentative goals are 0.3% (0.5%) for $\pi^{+}\pi^{-}$ and ~3% for multibody modes.
- VEPP-2000 upgrade is completed with new positron injection facility, which will increase luminosity at least by factor of 10 (~3 - 5 times at the moment).
- We star analysis processes with Ks in final states: K_SK^{0*} → K_SK[±]π⁻⁺, K^{*±}K⁻⁺ → K_Sπ[±]K⁻⁺, K^{*±}K^{*-+} → K_Sπ[±]K⁻⁺π⁰ and so on
- We plan to get data with integrated luminosity of about 1-2 fb⁻¹ in 5 years, which should provide new precise results on multihadron production.

Collected luminosity

Today the peak luminosity is limited by a deficit of positrons (650 MeV) and limited energy of the booster (higher 825 MeV).

After upgrade (completed) we expect increasing of luminosity by a factor of 10 at maximum beam energy.

Collected L ~ 60 pb ⁻¹ per detector		
8.3 pb ⁻¹	ω-region	
9.4 pb⁻¹	region below 1 GeV (except ω)	
8.4 pb⁻¹	φ- region	
34.5 pb⁻¹	region higher than ϕ	

1800

20

1. $e+e- \rightarrow \pi^{0}\pi^{0}\gamma$, Phys.Rev.D, (2013) 2. $e+e- \rightarrow 6\pi$, Phys.Lett.B,(2013) 3. $e+e- \rightarrow nn$, Phys.Rev.D,(2014) 4. $e+e- \rightarrow NN$ 6π , JETP Lett.,(2014) 5. $e+e- \rightarrow \eta\gamma$, Phys.Rev.D,(2014) 6. $e+e- \rightarrow \eta'$, Phys.Lett.B,(2015) 7. $e+e- \rightarrow \eta,\eta'$, Phys.Rev.D,(2015) 8. $e+e- \rightarrow \eta\pi^{+}\pi^{-}$, Phys.Rev.D,(2015) 9. $e+e- \rightarrow \pi^{+}\pi^{-}\pi^{0}$, JETP,(2015) 10. $e+e- \rightarrow \kappa^{+}\kappa^{-}$, Yad.Fizika, (2015) 11. e+e- → η, JETP Lett.,(2015) 12. e+e- → K⁺K⁻, Phys.Rev.D,(2016) 13. e+e- \rightarrow ωηπ⁰, Phys.Rev.D,(2016) 14. e+e- → ωη, Phys.Rev.D,(2016) 15. e+e- $\rightarrow \pi^0 \gamma$, Phys.Rev.D,(2016) 16. e+e- \rightarrow K⁺K⁻ $\pi^+\pi^-$, Phys.Lett.B,(2016) 17. e+e- → pp, Phys.Lett.B,(2016) 18. e+e- \rightarrow K_sK₁, Phys.Lett.B,(2016) Phys.Rev.D, (2016) 19. e+e- $\rightarrow \pi^0 \pi^0 \gamma$,